Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(7): 240119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021771

RESUMEN

Objective assessment of activity via accelerometry can provide valuable insights into dog health and welfare. Common activity metrics involve using acceleration cut-points to group data into intensity categories and reporting the time spent in each category. Lack of consistency and transparency in cut-point derivation makes it difficult to compare findings between studies. We present an alternative metric for use in dogs: the acceleration threshold (as a fraction of standard gravity, 1 g = 9.81 m/s2) above which the animal's X most active minutes are accumulated (MXACC) over a 24-hour period. We report M2ACC, M30ACC and M60ACC data from a colony of healthy beagles (n = 6) aged 3-13 months. To ensure that reference values are applicable across a wider dog population, we incorporated labelled data from beagles and volunteer pet dogs (n = 16) of a variety of ages and breeds. The dogs' normal activity patterns were recorded at 200 Hz for 24 hours using collar-based Axivity-AX3 accelerometers. We calculated acceleration vector magnitude and MXACC metrics. Using labelled data from both beagles and pet dogs, we characterize the range of acceleration outputs exhibited enabling meaningful interpretation of MXACC. These metrics will help standardize measurement of canine activity and serve as outcome measures for veterinary and translational research.

2.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873800

RESUMEN

The isometric force-length (F-L) and isotonic force-velocity (F-V) relationships characterize the contractile properties of skeletal muscle under controlled conditions, yet it remains unclear how these properties relate to in vivo muscle function. Here, we map the in situ F-L and F-V characteristics of guinea fowl (Numida meleagris) lateral gastrocnemius (LG) to the in vivo operating range during walking and running. We test the hypothesis that muscle fascicles operate on the F-L plateau, near the optimal length for force (L0) and near velocities that maximize power output (Vopt) during walking and running. We found that in vivo LG velocities are consistent with optimizing power during work production, and economy of force at higher loads. However, LG does not operate near L0 at higher loads. LG length was near L0 at the time of electromyography (EMG) onset but shortened rapidly such that force development during stance occurred on the ascending limb of the F-L curve, around 0.8L0. Shortening across L0 in late swing might optimize potential for rapid force development near the swing-stance transition, providing resistance to unexpected perturbations that require rapid force development. We also found evidence of in vivo passive force rise in late swing, without EMG activity, at lengths where in situ passive force is zero, suggesting that dynamic viscoelastic effects contribute to in vivo force development. Comparison of in vivo operating ranges with F-L and F-V properties suggests the need for new approaches to characterize muscle properties in controlled conditions that more closely resemble in vivo dynamics.


Asunto(s)
Galliformes , Músculo Esquelético , Animales , Galliformes/fisiología , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Carrera/fisiología , Electromiografía , Caminata/fisiología , Contracción Muscular/fisiología , Contracción Isométrica/fisiología
3.
J R Soc Interface ; 21(210): 20230527, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290561

RESUMEN

Biological springs can be used in nature for energy conservation and ultra-fast motion. The loading and unloading rates of elastic materials can play an important role in determining how the properties of these springs affect movements. We investigate the mechanical energy efficiency of biological springs (American bullfrog plantaris tendons and guinea fowl lateral gastrocnemius tendons) and synthetic elastomers. We measure these materials under symmetric rates (equal loading and unloading durations) and asymmetric rates (unequal loading and unloading durations) using novel dynamic mechanical analysis measurements. We find that mechanical efficiency is highest at symmetric rates and significantly decreases with a larger degree of asymmetry. A generalized one-dimensional Maxwell model with no fitting parameters captures the experimental results based on the independently characterized linear viscoelastic properties of the materials. The model further shows that a broader viscoelastic relaxation spectrum enhances the effect of rate-asymmetry on efficiency. Overall, our study provides valuable insights into the interplay between material properties and unloading dynamics in both biological and synthetic elastic systems.


Asunto(s)
Conservación de los Recursos Energéticos , Tendones , Músculo Esquelético , Elasticidad , Elastómeros , Estrés Mecánico , Viscosidad
4.
J Exp Biol ; 226(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38059428

RESUMEN

To celebrate its centenary year, Journal of Experimental Biology (JEB) commissioned a collection of articles examining the past, present and future of experimental biology. This Commentary closes the collection by considering the important research opportunities and challenges that await us in the future. We expect that researchers will harness the power of technological advances, such as '-omics' and gene editing, to probe resistance and resilience to environmental change as well as other organismal responses. The capacity to handle large data sets will allow high-resolution data to be collected for individual animals and to understand population, species and community responses. The availability of large data sets will also place greater emphasis on approaches such as modeling and simulations. Finally, the increasing sophistication of biologgers will allow more comprehensive data to be collected for individual animals in the wild. Collectively, these approaches will provide an unprecedented understanding of 'how animals work' as well as keys to safeguarding animals at a time when anthropogenic activities are degrading the natural environment.


Asunto(s)
Ambiente , Genómica , Animales
5.
J Exp Biol ; 226(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37565347

RESUMEN

Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) - systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers - and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Animales , Retroalimentación , Locomoción/fisiología , Médula Espinal/fisiología , Vertebrados
6.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334740

RESUMEN

The work loop technique has provided key insights into in vivo muscle work and power during steady locomotion. However, for many animals and muscles, ex vivo experiments are not feasible. In addition, purely sinusoidal strain trajectories lack variations in strain rate that result from variable loading during locomotion. Therefore, it is useful to develop an 'avatar' approach in which in vivo strain and activation patterns from one muscle are replicated in ex vivo experiments on a readily available muscle from an established animal model. In the present study, we used mouse extensor digitorum longus (EDL) muscles in ex vivo experiments to investigate in vivo mechanics of the guinea fowl lateral gastrocnemius (LG) muscle during unsteady running on a treadmill with obstacle perturbations. In vivo strain trajectories from strides down from obstacle to treadmill, up from treadmill to obstacle, strides with no obstacle and sinusoidal strain trajectories at the same amplitude and frequency were used as inputs in work loop experiments. As expected, EDL forces produced with in vivo strain trajectories were more similar to in vivo LG forces (R2=0.58-0.94) than were forces produced with the sinusoidal trajectory (average R2=0.045). Given the same stimulation, in vivo strain trajectories produced work loops that showed a shift in function from more positive work during strides up from treadmill to obstacle to less positive work in strides down from obstacle to treadmill. Stimulation, strain trajectory and their interaction had significant effects on all work loop variables, with the interaction having the largest effect on peak force and work per cycle. These results support the theory that muscle is an active material whose viscoelastic properties are tuned by activation, and which produces forces in response to deformations of length associated with time-varying loads.


Asunto(s)
Galliformes , Carrera , Ratones , Animales , Fenómenos Biomecánicos , Locomoción/fisiología , Músculo Esquelético/fisiología , Galliformes/fisiología , Contracción Muscular/fisiología
7.
J Exp Biol ; 226(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37282982

RESUMEN

Recent studies of in vivo muscle function in guinea fowl revealed that distal leg muscles rapidly modulate force and work to stabilize running in uneven terrain. Previous studies focused on running only, and it remains unclear how muscular mechanisms for stability differ between walking and running. Here, we investigated in vivo function of the lateral gastrocnemius (LG) during walking over obstacles. We compared muscle function in birds with intact (iLG) versus self-reinnervated LG (rLG). Self-reinnervation results in proprioceptive feedback deficit due to loss of monosynaptic stretch reflex. We tested the hypothesis that proprioceptive deficit results in decreased modulation of EMG activity in response to obstacle contact, and a delayed obstacle recovery compared with that for iLG. We found that total myoelectric intensity (Etot) of iLG increased by 68% in obstacle strides (S 0) compared with level terrain, suggesting a substantial reflex-mediated response. In contrast, Etot of rLG increased by 31% in S 0 strides compared with level walking, but also increased by 43% in the first post-obstacle (S +1) stride. In iLG, muscle force and work differed significantly from level walking only in the S 0 stride, indicating a single-stride recovery. In rLG, force increased in S 0, S +1 and S +2 compared with level walking, indicating three-stride obstacle recovery. Interestingly, rLG showed little variation in work output and shortening velocity in obstacle terrain, indicating a shift towards near-isometric strut-like function. Reinnervated birds also adopted a more crouched posture across level and obstacle terrains compared with intact birds. These findings suggest gait-specific control mechanisms in walking and running.


Asunto(s)
Galliformes , Caminata , Animales , Fenómenos Biomecánicos , Caminata/fisiología , Músculo Esquelético/fisiología , Marcha/fisiología , Galliformes/fisiología
10.
Sci Robot ; 7(64): eabg4055, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35294220

RESUMEN

Designers of legged robots are challenged with creating mechanisms that allow energy-efficient locomotion with robust and minimalistic control. Sources of high energy costs in legged robots include the rapid loading and high forces required to support the robot's mass during stance and the rapid cycling of the leg's state between stance and swing phases. Here, we demonstrate an avian-inspired robot leg design, BirdBot, that challenges the reliance on rapid feedback control for joint coordination and replaces active control with intrinsic, mechanical coupling, reminiscent of a self-engaging and disengaging clutch. A spring tendon network rapidly switches the leg's slack segments into a loadable state at touchdown, distributes load among joints, enables rapid disengagement at toe-off through elastically stored energy, and coordinates swing leg flexion. A bistable joint mediates the spring tendon network's disengagement at the end of stance, powered by stance phase leg angle progression. We show reduced knee-flexing torque to a 10th of what is required for a nonclutching, parallel-elastic leg design with the same kinematics, whereas spring-based compliance extends the leg in stance phase. These mechanisms enable bipedal locomotion with four robot actuators under feedforward control, with high energy efficiency. The robot offers a physical model demonstration of an avian-inspired, multiarticular elastic coupling mechanism that can achieve self-stable, robust, and economic legged locomotion with simple control and no sensory feedback. The proposed design is scalable, allowing the design of large legged robots. BirdBot demonstrates a mechanism for self-engaging and disengaging parallel elastic legs that are contact-triggered by the foot's own lever-arm action.


Asunto(s)
Pierna , Robótica , Animales , Fenómenos Biomecánicos , Aves , Marcha , Locomoción
12.
Elife ; 102021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34396953

RESUMEN

Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in posthatching day 8 hatchlings, with occasional collapses, variable step profiles, and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.


Asunto(s)
Marcha/fisiología , Interneuronas/fisiología , Médula Espinal , Animales , Embrión de Pollo , Pollos , Región Lumbosacra , Médula Espinal/citología , Médula Espinal/fisiología , Tractos Espinocerebelares/citología , Tractos Espinocerebelares/fisiología , Sinapsis/fisiología
13.
Elife ; 92020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32573432

RESUMEN

Animals must integrate feedforward, feedback and intrinsic mechanical control mechanisms to maintain stable locomotion. Recent studies of guinea fowl (Numida meleagris) revealed that the distal leg muscles rapidly modulate force and work output to minimize perturbations in uneven terrain. Here we probe the role of reflexes in the rapid perturbation responses of muscle by studying the effects of proprioceptive loss. We induced bilateral loss of autogenic proprioception in the lateral gastrocnemius muscle (LG) using self-reinnervation. We compared in vivo muscle dynamics and ankle kinematics in birds with reinnervated and intact LG. Reinnervated and intact LG exhibit similar steady state mechanical function and similar work modulation in response to obstacle encounters. Reinnervated LG exhibits 23ms earlier steady-state activation, consistent with feedforward tuning of activation phase to compensate for lost proprioception. Modulation of activity duration is impaired in rLG, confirming the role of reflex feedback in regulating force duration in intact muscle.


Asunto(s)
Galliformes/fisiología , Locomoción/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Propiocepción/fisiología , Reflejo/fisiología , Animales , Fenómenos Biomecánicos , Electromiografía , Retroalimentación Sensorial
14.
Vet Rec ; 187(4): 152, 2020 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444506

RESUMEN

BACKGROUND: Canine idiopathic epilepsy (IE) is characterised by recurrent seizure activity, which can appear unpredictable and uncontrollable. The purpose of this study was to investigate the potential for seizure prediction in dogs by exploring owner-perceived seizure prediction abilities and identifying owner-reported prodromal changes (long-term changes in disposition that indicate forthcoming seizures) and seizure triggers (stimuli that precipitate seizures) in dogs with IE. METHODS: This is an online, international, cross-sectional survey of 229 owners of dogs diagnosed with IE, meeting the International Veterinary Epilepsy Task Force tier I diagnostic criteria. RESULTS: Over half (59.6 per cent) of owners believed they were able to predict an upcoming seizure in their dog, of whom nearly half (45.5 per cent) were able to do so at least 30 minutes before the seizure commenced. The most common 'seizure predictors' were preseizure behavioural changes including increased clinginess (25.4 per cent), restlessness (23.1 per cent) and fearful behaviour (19.4 per cent). Nearly two-thirds of owners reported prodromal changes (64.9 per cent), most commonly restlessness (29.2 per cent), and nearly half (43.1 per cent) reported seizure triggers, most commonly stress (39.1 per cent). CONCLUSIONS: The relatively high prevalence of owner-reported prodromal changes and seizure triggers shows promise for utilising these methods to aid seizure prediction in dogs, which could open a window of time for pre-emptive, individualised drug interventions to abort impending seizure activity.


Asunto(s)
Enfermedades de los Perros , Epilepsia/veterinaria , Convulsiones/veterinaria , Animales , Estudios Transversales , Enfermedades de los Perros/etiología , Perros , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad , Propiedad , Factores Desencadenantes , Convulsiones/etiología , Encuestas y Cuestionarios
15.
Integr Org Biol ; 2(1): obaa038, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33791576

RESUMEN

Archosaurian reptiles (including living crocodiles and birds) had an explosive diversification of locomotor form and function since the Triassic approximately 250 million years ago. Their limb muscle physiology and biomechanics are pivotal to our understanding of how their diversity and evolution relate to locomotor function. Muscle contraction velocity, force, and power in extinct archosaurs such as early crocodiles, pterosaurs, or non-avian dinosaurs are not available from fossil material, but are needed for biomechanical modeling and simulation. However, an approximation or range of potential parameter values can be obtained by studying extant representatives of the archosaur lineage. Here, we study the physiological performance of three appendicular muscles in Nile crocodiles (Crocodylus niloticus). Nile crocodile musculature showed high power and velocity values-the flexor tibialis internus 4 muscle, a small "hamstring" hip extensor, and knee flexor actively used for terrestrial locomotion, performed particularly well. Our findings demonstrate some physiological differences between muscles, potentially relating to differences in locomotor function, and muscle fiber type composition. By considering these new data from a previously unstudied archosaurian species in light of existing data (e.g., from birds), we can now better bracket estimates of muscle parameters for extinct species and related extant species. Nonetheless, it will be important to consider the potential specialization and physiological variation among muscles, because some archosaurian muscles (such as those with terrestrial locomotor function) may well have close to double the muscle power and contraction velocity capacities of others.


Les archosaures, le groupe de reptiles incluant les oiseaux et les crocodiles actuels, sont caractérisés par une diversification importante de leurs formes et fonctions locomotrices depuis le Trias il y a environ 250 millions d'années. Des études biomécaniques et musculaires centrées sur les membres appendiculaires sont donc essentielles pour comprendre le lien qui unit les fonctions locomotrices des archosaures avec leur histoire évolutive et leur forte diversité. Les données les plus fréquemment utilisées, telles que la vitesse de contraction et la force musculaire, ne sont pas accessibles pour les archosaures éteints tels que ceux issus de la lignée fossile des crocodiles (pseudosuchiens), les ptérosaures ainsi que les dinosaures non-aviens. Ces données sont pourtant nécessaires à l'établissement de modélisations et de simulations biomécaniques à l'échelle du groupe. Il est cependant possible d'obtenir une estimation de ces paramètres à partir des archosaures actuels. Cette étude présente en détails la physiologie de trois Crocodiles du Nil (Crocodylus niloticus) en détaillant les performances musculaires de leur appareil locomoteur. Les muscles des Crocodiles du Nil présentent des forces et des vitesses de contraction élevées. Les performances du muscle flexeur tibialis internus 4, qui est un petit muscle ischio-jambier entre la hanche et le genou fréquemment sollicité chez les animaux terrestres, s'avèrent être particulièrement élevées. Notre étude met en évidence des différences de physiologie entre les muscles, potentiellement liées aux différences de fonctions locomotrices et à la composition des différents types de fibres musculaires. En couplant ces nouvelles données avec celles déjà connues chez les oiseaux, il est possible de mieux estimer les paramètres musculaires d'espèces éteintes ainsi que d'espèces actuelles phylogénétiquement proches. Il est également essentiel de considérer les différentes spécialisations ainsi que les variations de physiologie musculaire. En effet, les muscles de certains archosaures, en particulier ceux dotés d'un mode de locomotion terrestre, pourrait présenter des forces et vitesses de contractions musculaires bien supérieures à celles d'autres espèces.By Romain Pintore, RVC.

16.
Integr Org Biol ; 2(1): obaa037, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33791575

RESUMEN

Birds are diverse and agile vertebrates capable of aerial, terrestrial, aquatic, and arboreal locomotion. Evidence suggests that birds possess a novel balance sensing organ in the lumbosacral spinal canal, a structure referred to as the "lumbosacral organ" (LSO), which may contribute to their locomotor agility and evolutionary success. The mechanosensing mechanism of this organ remains unclear. Here we quantify the 3D anatomy of the lumbosacral region of the common quail, focusing on establishing the geometric and biomechanical properties relevant to potential mechanosensing functions. We combine digital and classic dissection to create a 3D anatomical model of the quail LSO and estimate the capacity for displacement and deformation of the soft tissues. We observe a hammock-like network of denticulate ligaments supporting the lumbosacral spinal cord, with a close association between the accessory lobes and ligamentous intersections. The relatively dense glycogen body has the potential to apply loads sufficient to pre-stress denticulate ligaments, enabling external accelerations to excite tuned oscillations in the LSO soft tissue, leading to strain-based mechanosensing in the accessory lobe neurons. Considering these anatomical features together, the structure of the LSO is reminiscent of a mass-spring-based accelerometer.

17.
J Morphol ; 280(5): 666-680, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30847966

RESUMEN

Electromyography (EMG) is used to understand muscle activity patterns in animals. Understanding how much variation exists in muscle activity patterns in homologous muscles across animal clades during similar behaviours is important for evaluating the evolution of muscle functions and neuromuscular control. We compared muscle activity across a range of archosaurian species and appendicular muscles, including how these EMG patterns varied across ontogeny and phylogeny, to reconstruct the evolutionary history of archosaurian muscle activation during locomotion. EMG electrodes were implanted into the muscles of turkeys, pheasants, quail, guineafowl, emus (three age classes), tinamous and juvenile Nile crocodiles across 13 different appendicular muscles. Subjects walked and ran at a range of speeds both overground and on treadmills during EMG recordings. Anatomically similar muscles such as the lateral gastrocnemius exhibited similar EMG patterns at similar relative speeds across all birds. In the crocodiles, the EMG signals closely matched previously published data for alligators. The timing of lateral gastrocnemius activation was relatively later within a stride cycle for crocodiles compared to birds. This difference may relate to the coordinated knee extension and ankle plantarflexion timing across the swing-stance transition in Crocodylia, unlike in birds where there is knee flexion and ankle dorsiflexion across swing-stance. No significant effects were found across the species for ontogeny, or between treadmill and overground locomotion. Our findings strengthen the inference that some muscle EMG patterns remained conservative throughout Archosauria: for example, digital flexors retained similar stance phase activity and M. pectoralis remained an 'anti-gravity' muscle. However, some avian hindlimb muscles evolved divergent activations in tandem with functional changes such as bipedalism and more crouched postures, especially M. iliotrochantericus caudalis switching from swing to stance phase activity and M. iliofibularis adding a novel stance phase burst of activity.


Asunto(s)
Aves/anatomía & histología , Extinción Biológica , Extremidades/anatomía & histología , Extremidades/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Unión Neuromuscular/fisiología , Reptiles/anatomía & histología , Animales , Aves/fisiología , Electromiografía , Reptiles/fisiología , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
19.
Integr Comp Biol ; 58(5): 884-893, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897448

RESUMEN

Birds are a diverse and agile lineage of vertebrates that all use bipedal locomotion for at least part of their life. Thus birds provide a valuable opportunity to investigate how biomechanics and sensorimotor control are integrated for agile bipedal locomotion. This review summarizes recent work using terrain perturbations to reveal neuromechanical control strategies used by ground birds to achieve robust, stable, and agile running. Early experiments in running guinea fowl aimed to reveal the immediate intrinsic mechanical response to an unexpected drop ("pothole") in terrain. When navigating the pothole, guinea fowl experience large changes in leg posture in the perturbed step, which correlates strongly with leg loading and perturbation recovery. Analysis of simple theoretical models of running has further confirmed the crucial role of swing-leg trajectory control for regulating foot contact timing and leg loading in uneven terrain. Coupling between body and leg dynamics results in an inherent trade-off in swing leg retraction rate for fall avoidance versus injury avoidance. Fast leg retraction minimizes injury risk, but slow leg retraction minimizes fall risk. Subsequent experiments have investigated how birds optimize their control strategies depending on the type of perturbation (pothole, step, obstacle), visibility of terrain, and with ample practice negotiating terrain features. Birds use several control strategies consistently across terrain contexts: (1) independent control of leg angular cycling and leg length actuation, which facilitates dynamic stability through simple control mechanisms, (2) feedforward regulation of leg cycling rate, which tunes foot-contact timing to maintain consistent leg loading in uneven terrain (minimizing fall and injury risks), (3) load-dependent muscle actuation, which rapidly adjusts stance push-off and stabilizes body mechanical energy, and (4) multi-step recovery strategies that allow body dynamics to transiently vary while tightly regulating leg loading to minimize risks of fall and injury. In future work, it will be interesting to investigate the learning and adaptation processes that allow animals to adjust neuromechanical control mechanisms over short and long timescales.


Asunto(s)
Aves/fisiología , Retroalimentación Sensorial , Carrera/fisiología , Animales , Fenómenos Biomecánicos
20.
Phys Ther Sport ; 32: 244-251, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29879639

RESUMEN

OBJECTIVES: To explore feasibility of recruitment and retention of runners with patellofemoral pain (PFP), before delivering a step rate intervention. DESIGN: Feasibility study. SETTING: Human performance laboratory. PARTICIPANTS: A mixed-sex sample of runners with PFP (n = 11). MAIN OUTCOME MEASURES: Average/worst pain and the Kujala Scale were recorded pre/post intervention, alongside lower limb kinematics and surface electromyography (sEMG), sampled during a 3 KM treadmill run. RESULTS: Recruitment and retention of a mixed-sex cohort was successful, losing one participant to public healthcare and with kinematic and sEMG data lost from single participants only. Clinically meaningful reductions in average (MD = 2.1, d = 1.7) and worst pain (MD = 3.9, d = 2.0) were observed. Reductions in both peak knee flexion (MD = 3.7°, d = 0.78) and peak hip internal rotation (MD = 5.1°, d = 0.96) were observed, which may provide some mechanistic explanation for the identified effects. An increase in both mean amplitude (d = 0.53) and integral (d = 0.58) were observed for the Vastus Medialis Obliqus (VMO) muscle only, of questionable clinical relevance. CONCLUSIONS: Recruitment and retention of a mixed sex PFP cohort to a step rate intervention involving detailed biomechanical measures is feasible. There are indications of both likely efficacy and associated mechanisms. Future studies comparing the efficacy of different running retraining approaches are warranted.


Asunto(s)
Marcha , Dimensión del Dolor , Síndrome de Dolor Patelofemoral/rehabilitación , Carrera/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Estudios de Factibilidad , Femenino , Articulación de la Cadera , Humanos , Articulación de la Rodilla , Masculino , Síndrome de Dolor Patelofemoral/fisiopatología , Músculo Cuádriceps/fisiología , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA