Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(36): e2209662119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037348

RESUMEN

Water harvesting from air is desired for decentralized water supply wherever water is needed. When water vapor is condensed as droplets on a surface the unremoved droplets act as thermal barriers. A surface that can provide continual droplet-free areas for nucleation is favorable for condensation water harvesting. Here, we report a flow-separation condensation mode on a hydrophilic reentrant slippery liquid-infused porous surface (SLIPS) that rapidly removes droplets with diameters above 50 µm. The slippery reentrant channels lock the liquid columns inside and transport them to the end of each channel. We demonstrate that the liquid columns can harvest the droplets on top of the hydrophilic reentrant SLIPS at a high droplet removal frequency of 130 Hz/mm2. The sustainable flow separation without flooding increases the water harvesting rate by 110% compared to the state-of-the-art hydrophilic flat SLIPS. Such a flow-separation condensation approach paves a way for water harvesting.


Asunto(s)
Propiedades de Superficie , Recursos Hídricos , Interacciones Hidrofóbicas e Hidrofílicas , Porosidad , Movimientos del Agua
2.
ACS Appl Mater Interfaces ; 14(11): 13932-13941, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35287435

RESUMEN

Sustainable high-performance steam condensation is critical to reducing the size, weight, and cost of water and energy systems. It is well-known that dropwise condensation can provide a significantly higher heat-transfer coefficient than filmwise condensation. Tremendous efforts have been spent to promote dropwise condensation by achieving a nonwetting state on superhydrophobic surfaces and a slippery state on liquid-infused surfaces, but these surfaces suffer from severe durability challenges. Here, we report sustainable high-performance dropwise condensation of steam on newly developed durable quasi-liquid surfaces, which are easily made by chemically bonding quasi-liquid polymer molecules on solid substrates. As a result, the solid/water interface is changed to a quasi-liquid/water interface with minimal adhesion and extraordinary durability. The quasi-liquid surface with ultralow contact angle hysteresis down to 1° showed a heat-transfer coefficient up to 70 and 380% higher than those on conventional hydrophobic and hydrophilic surfaces, respectively. Furthermore, we demonstrated that the quasi-liquid coating exhibited a sustainable heat-transfer coefficient of 71 kW/(m2 K) at a heat flux of 420 kW/m2 under a prolonged period of 39 h in continuous steam condensation. Such a quasi-liquid surface has the potential to sustain high-performance dropwise condensation of steam and address the long-standing durability challenge in the field.

3.
Langmuir ; 36(26): 7383-7391, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32498521

RESUMEN

Water condensation plays a major role in a wide range of industrial applications. Over the past few years, many studies have shown interest in designing surfaces with enhanced water condensation and removal properties. It is well known that heterogeneous nucleation outperforms homogeneous nucleation in the condensation process. Because heterogeneous nucleation initiates on a surface at a small scale, it is highly desirable to characterize water-surface interactions at the molecular level. Molecular dynamics (MD) simulations can provide direct insight into heterogeneous nucleation and advance surface designs. Existing MD simulations of water condensation on surfaces were conducted by tuning the solid-water van der Waals interaction energy as a substitute for modeling surfaces with different wettabilities. However, this approach cannot reflect the real intermolecular interactions between the surface and water molecules. Here, we report MD simulations of water condensation on realistic surfaces of alkanethiol self-assembled monolayers with different head group chemistries. We show that decreasing surface hydrophobicity significantly increases the electrostatic forces between water molecules and the surface, thus increasing the water condensation rate. We observe a strong correlation between our rate of condensation results and the results from other surface characterization metrics, such as the interfacial thermal conductance, contact angle, and the molecular-scale wettability metric of Garde and co-workers. This work provides insight into the water condensation process at the molecular scale on surfaces with tunable wettability.

4.
ACS Appl Mater Interfaces ; 12(17): 20084-20095, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32255601

RESUMEN

Surfaces with ultralow adhesion to liquids and solids have attracted broad interests in both fundamental studies and engineering applications from passive removal of highly wetting liquids and water harvesting to anti-/de-icing. The current state-of-the-art superomniphobic surfaces (rely on air lubricant) and liquid-infused surfaces (rely on liquid lubricant) suffer from severe issues for liquid repellency and ice removal: air/liquid lubricant loss or topography damage. Here, we create a durable quasi-liquid surface by tethering flexible polymer on various solid substrates. The untethered end of the polymer has mobile chains that behave like a liquid layer and greatly reduce the interfacial adhesion between the surface and foreign liquids/solids. Such a quasi-liquid surface with a 30.1 nm flexible polymer layer shows ultralow contact angle hysteresis (≤1.0°) to liquids regardless of their surface tensions. The highly wetting perfluorinated liquids like FC72 and Krytox101, as well as complex fluids like urine and crude oil, can be repelled from the surface. Moreover, wind can remove accreted ice from the surface in harsh conditions due to the negligible ice adhesion. We have demonstrated that the quasi-liquid surface shows robust performances in repelling highly wetting liquids, harvesting water, and removing ice, respectively.

5.
Sci Adv ; 4(3): eaaq0919, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29670942

RESUMEN

Multifunctional surfaces that are favorable for both droplet nucleation and removal are highly desirable for water harvesting applications but are rare. Inspired by the unique functions of pitcher plants and rice leaves, we present a hydrophilic directional slippery rough surface (SRS) that is capable of rapidly nucleating and removing water droplets. Our surfaces consist of nanotextured directional microgrooves in which the nanotextures alone are infused with hydrophilic liquid lubricant. We have shown through molecular dynamics simulations that the physical origin of the efficient droplet nucleation is attributed to the hydrophilic surface functional groups, whereas the rapid droplet removal is due to the significantly reduced droplet pinning of the directional surface structures and slippery interface. We have further demonstrated that the SRS, owing to its large surface area, hydrophilic slippery interface, and directional liquid repellency, outperforms conventional liquid-repellent surfaces in water harvesting applications.

6.
Proc Natl Acad Sci U S A ; 113(2): 268-73, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26719413

RESUMEN

Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10(-15) mol⋅L(-1)). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10(-18) mol⋅L(-1)) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security.

7.
ACS Nano ; 9(9): 9260-7, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26302154

RESUMEN

Enhancing the mobility of liquid droplets on rough surfaces is of great interest in industry, with applications ranging from condensation heat transfer to water harvesting to the prevention of icing and frosting. The mobility of a liquid droplet on a rough solid surface has long been associated with its wetting state. When liquid drops are sitting on the top of the solid textures and air is trapped underneath, they are in the Cassie state. When the drops impregnate the solid textures, they are in the Wenzel state. While the Cassie state has long been associated with high droplet mobility and the Wenzel state with droplet pinning, our work challenges this existing convention by showing that both Cassie and Wenzel state droplets can be highly mobile on nanotexture-enabled slippery rough surfaces. Our surfaces were developed by engineering hierachical nano- and microscale textures and infusing liquid lubricant into the nanotextures alone to create a highly slippery rough surface. We have shown that droplet mobility can be maintained even after the Cassie-to-Wenzel transition. Moreover, the discovery of the slippery Wenzel state allows us to assess the fundamental limits of the classical and recent Wenzel models at the highest experimental precision to date, which could not be achieved by any other conventional rough surface. Our results show that the classical Wenzel eq (1936) cannot predict the wetting behaviors of highly wetting liquids in the Wenzel state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA