Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 738: 139808, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531596

RESUMEN

The extreme climate events such as El Nino seriously threaten crop production and agro-ecological sustainability because of the aggravated environmental stresses worldwide, particularly in sub-Saharan Africa. To address this issue, we investigated the effects of dual plastic film and straw mulching in ridge-furrow (RF) system on wheat productivity, soil carbon and nitrogen stocks in a semiarid area in Kenya from 2015 to 2017. The experimental site represents a typical semiarid continental monsoon climate, and soil type is chromic vertisols. Field experiment with randomized block design consisted of six RF treatments as follows: 1) dual black plastic film and straw mulching (RFbS), 2) dual transparent plastic film and straw mulching (RFtS), 3) sole black plastic film mulching (RFb), 4) sole transparent plastic mulching RF (RFt), 5) sole straw mulching (RFS) and 6) no mulching (CK). The results indicated that seasonal dynamics of rainfall and air temperature fit in with the weather type of El Nino over four growing seasons. RFbS, RFtS, RFb and RFt significantly increased soil water storage (SWS), topsoil temperature, aboveground biomass, grain yield and water use efficiency across four growing seasons (p < 0.05) as compared with CK. Among all the treatments, RFbS and RFtS achieved the greatest SWS, AgB, grain yield and WUE, owing to improved soil hydro-thermal status in both treatments. Critically, RFbS and RFtS significantly improved soil organic carbon and total nitrogen, soil bulk density and the C:N ratio following four growing seasons, comparing with other treatments (p < 0.05). Besides, RFbS and RFtS gave the highest economic returns among all treatments. For the first time, we found that dual plastic film and straw mulching could serve as a sustainable land management to boost wheat productivity and improve soil quality under El Nino in semiarid areas of SSA.


Asunto(s)
Suelo , Triticum , Agricultura , Carbono , China , El Niño Oscilación del Sur , Kenia , Plásticos , Agua/análisis , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA