Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37508831

RESUMEN

Plant fibers possess high strength, high fracture toughness and elasticity, and have proven useful because of their diversity, versatility, renewability, and sustainability. For biomedical applications, these natural fibers have been used as reinforcement for biocomposites to infer these hybrid biomaterials mechanical characteristics, such as stiffness, strength, and durability. The reinforced hybrid composites have been tested in structural and semi-structural biodevices for potential applications in orthopedics, prosthesis, tissue engineering, and wound dressings. This review introduces plant fibers, their properties and factors impacting them, in addition to their applications. Then, it discusses different methodologies used to prepare hybrid composites based on these widespread, renewable fibers and the unique properties that the obtained biomaterials possess. It also examines several examples of hybrid composites and their biomedical applications. Finally, the findings are summed up and some thoughts for future developments are provided. Overall, the focus of the present review lies in analyzing the design, requirements, and performance, and future developments of hybrid composites based on plant fibers.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770385

RESUMEN

Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.

3.
Molecules ; 27(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056773

RESUMEN

Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.


Asunto(s)
Biotecnología , Calcógenos/química , Escherichia coli , Nanopartículas/química , Nanotecnología , Azufre/química , Biomasa , Biotecnología/métodos , Fenómenos Químicos , Escherichia coli/metabolismo , Nanopartículas del Metal/química , Nanotecnología/métodos , Puntos Cuánticos
4.
Adv Healthc Mater ; 11(1): e2101389, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643331

RESUMEN

Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.


Asunto(s)
Materiales Biocompatibles , Biodiversidad , Atención a la Salud
5.
Molecules ; 26(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576919

RESUMEN

Ultrasound (US) and X-ray imaging are diagnostic methods that are commonly used to image internal body structures. Several organic and inorganic imaging contrast agents are commercially available. However, their synthesis and purification remain challenging, in addition to posing safety issues. Here, we report on the promise of widespread, safe, and easy-to-produce particulate calcium fluoride (part-CaF2) as a bimodal US and X-ray contrast agent. Pure and highly crystalline part-CaF2 is obtained using a cheap commercial product. Scanning electron microscopy (SEM) depicts the morphology of these particles, while energy-dispersive X-ray spectroscopy (EDS) confirms their chemical composition. Diffuse reflectance ultraviolet-visible spectroscopy highlights their insulating behavior. The X-ray diffraction (XRD) pattern reveals that part-CaF2 crystallizes in the face-centered cubic cell lattice. Further analyses regarding peak broadening are performed using the Scherrer and Williamson-Hall (W-H) methods, which pinpoint the small crystallite size and the presence of lattice strain. X-ray photoelectron spectroscopy (XPS) solely exhibits specific peaks related to CaF2, confirming the absence of any contamination. Additionally, in vitro cytotoxicity and in vivo maximum tolerated dose (MTD) tests prove the biocompatibility of part-CaF2. Finally, the results of the US and X-ray imaging tests strongly signal that part-CaF2 could be exploited in bimodal bioimaging applications. These findings may shed a new light on calcium fluoride and the opportunities it offers in biomedical engineering.


Asunto(s)
Materiales Biocompatibles , Fluoruro de Calcio , Cristalización
6.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361738

RESUMEN

Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents' nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.

7.
Pharm Res ; 38(2): 335-346, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33604784

RESUMEN

PURPOSE: Melanoma is an invasive and very aggressive skin cancer due to its multi-drug resistance that results in poor patient survival. There is a need to test new treatment approaches to improve therapeutic efficacy and reduce side effects of conventional treatments. METHODS: PLA/PVA nanoparticles carrying both Dacarbazine and zinc phthalocyanine was produced by double emulsion technique. The characterization was performed by dynamic light scattering and atomic force microscopy. In vitro photodynamic therapy test assay using MV3 melanoma cells as a model has been performed. In vitro cell viability (MTT) was performed to measure cell toxicity of of nanoparticles with and without drugs using human endothelial cells as a model. The in vivo assay (biodistribution/tissue deposition) has been performed using radiolabeled PLA/PVA NPs. RESULTS: The nanoparticles produced showed a mean diameter of about 259 nm with a spherical shape. The in-vitro photodynamic therapy tests demonstrated that the combination is critical to enhance the therapeutic efficacy and it is dose dependent. The in vitro cell toxicity assay using endothelial cells demonstrated that the drug encapsulated into nanoparticles had no significant toxicity compared to control samples. In-vivo results demonstrated that the drug loading affects the biodistribution of the nanoparticle formulations (NPs). Low accumulation of the NPs into the stomach, heart, brain, and kidneys suggested that common side effects of Dacarbazine could be reduced. CONCLUSION: This work reports a robust nanoparticle formulation with the objective to leveraging the synergistic effects of chemo and photodynamic therapies to potentially suppressing the drug resistance and reducing side effects associated with Dacarbazine. The data corroborates that the dual encapsulated NPs showed better in-vitro efficacy when compared with the both compounds alone. The results support the need to have a dual modality NP formulation for melanoma therapy by combining chemotherapy and photodynamic therapy.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Portadores de Fármacos/química , Melanoma/tratamiento farmacológico , Fármacos Fotosensibilizantes/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos Alquilantes/efectos adversos , Antineoplásicos Alquilantes/farmacocinética , Línea Celular Tumoral , Supervivencia Celular , Dacarbazina/administración & dosificación , Dacarbazina/farmacocinética , Composición de Medicamentos/métodos , Células Endoteliales , Humanos , Isoindoles/administración & dosificación , Isoindoles/farmacocinética , Masculino , Melanoma/patología , Ratones , Nanopartículas/química , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/farmacocinética , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacocinética , Poliésteres/química , Alcohol Polivinílico/química , Neoplasias Cutáneas/patología , Distribución Tisular , Compuestos de Zinc/administración & dosificación , Compuestos de Zinc/farmacocinética
8.
ACS Biomater Sci Eng ; 7(3): 1181-1191, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33590748

RESUMEN

Various noninvasive imaging techniques are used to produce deep-tissue and high-resolution images for biomedical research and clinical purposes. Organic and inorganic bioimaging agents have been developed to enhance the resolution and contrast intensity. This paper describes the synthesis of polytetrafluoroethylene-like nanoparticles (PTFE≈ NPs), their characterization, biological activity, and bioimaging properties. Transmission electron microscopy (TEM) images showed the shape and the size of the as-obtained small and ultrasmall PTFE≈ NPs. Fourier transform infrared spectroscopy (FTIR) confirmed the PTFE-like character of the samples. X-ray diffraction (XRD) enabled the determination of the crystallization system, cell lattice, and index of crystallinity of the material in addition to the presence of titania (TiO2) as the contamination. These findings were corroborated by X-ray photoelectron spectroscopy (XPS) that identifies the chemical states of the elements present in the samples along with their atomic percentages allowing the determination of both the purity index of the sample and the nature of the impurities. Additionally, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) was used to further assess the optical properties of the materials. Importantly, PTFE≈ NPs showed significant in vitro and in vivo biocompatibility. Lastly, PTFE≈ NPs were tested for their ultrasound and X-ray contrast properties. Our encouraging preliminary results open new avenues for PTFE-like nanomaterials as a suitable multifunctional contrast agent for biomedical imaging applications. Combined with suitable surface chemistry and morphology design, these findings shed light to new opportunities offered by PTFE nanoparticles in the ever-booming biomedical field.


Asunto(s)
Medios de Contraste , Nanopartículas , Politetrafluoroetileno , Difracción de Rayos X , Rayos X
9.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498184

RESUMEN

The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.


Asunto(s)
Tecnología Química Verde/métodos , Microbiología Industrial/métodos , Nanopartículas del Metal/química , Nanomedicina/métodos , Selenio/química , Telurio/química , Animales , Humanos , Nanopartículas del Metal/uso terapéutico
10.
Molecules ; 25(21)2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33171592

RESUMEN

Silver selenide (Ag2Se) is a promising nanomaterial due to its outstanding optoelectronic properties and countless bio-applications. To the best of our knowledge, we report, for the first time, a simple and easy method for the ultrasound-assisted synthesis of Ag2Se nanoparticles (NPs) by mixing aqueous solutions of silver nitrate (AgNO3) and selenous acid (H2SeO3) that act as Ag and Se sources, respectively, in the presence of dissolved fructose and starch that act as reducing and stabilizing agents, respectively. The concentrations of mono- and polysaccharides were screened to determine their effect on the size, shape and colloidal stability of the as-synthesized Ag2Se NPs which, in turn, impact the optical properties of these NPs. The morphology of the as-synthesized Ag2Se NPs was characterized by transmission electron microscopy (TEM) and both α- and ß-phases of Ag2Se were determined by X-ray diffraction (XRD). The optical properties of Ag2Se were studied using UV-Vis spectroscopy and its elemental composition was determined non-destructively using scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). The biological activity of the Ag2Se NPs was assessed using cytotoxic and bactericidal approaches. Our findings pave the way to the cost-effective, fast and scalable production of valuable Ag2Se NPs that may be utilized in numerous fields.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Nanopartículas del Metal/química , Compuestos de Selenio/química , Compuestos de Plata/química , Azúcares/química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Tecnología Química Verde , Humanos , Polisacáridos/química , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Ácido Selenioso/química , Semiconductores , Nitrato de Plata/química , Staphylococcus aureus/efectos de los fármacos
11.
Molecules ; 25(20)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050601

RESUMEN

The coronavirus infectious disease (COVID-19) pandemic emerged at the end of 2019, and was caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in an unprecedented health and economic crisis worldwide. One key aspect, compared to other recent pandemics, is the level of urgency, which has started a race for finding adequate answers. Solutions for efficient prevention approaches, rapid, reliable, and high throughput diagnostics, monitoring, and safe therapies are needed. Research across the world has been directed to fight against COVID-19. Biomedical science has been presented as a possible area for combating the SARS-CoV-2 virus due to the unique challenges raised by the pandemic, as reported by epidemiologists, immunologists, and medical doctors, including COVID-19's survival, symptoms, protein surface composition, and infection mechanisms. While the current knowledge about the SARS-CoV-2 virus is still limited, various (old and new) biomedical approaches have been developed and tested. Here, we review the current status and future perspectives of biomedical science in the context of COVID-19, including nanotechnology, prevention through vaccine engineering, diagnostic, monitoring, and therapy. This review is aimed at discussing the current impact of biomedical science in healthcare for the management of COVID-19, as well as some challenges to be addressed.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Investigación Biomédica/normas , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Betacoronavirus/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Manejo de la Enfermedad , Humanos , Neumonía Viral/diagnóstico , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2
12.
Bioengineering (Basel) ; 4(1)2017 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-28952493

RESUMEN

Several methodologies have been devised for the design of nanomaterials. The "Holy Grail" for materials scientists is the cost-effective, eco-friendly synthesis of nanomaterials with controlled sizes, shapes and compositions, as these features confer to the as-produced nanocrystals unique properties making them appropriate candidates for valuable bio-applications. The present review summarizes published data regarding the production of nanomaterials with special features via sustainable methodologies based on the utilization of natural bioresources. The richness of the latter, the diversity of the routes adopted and the tuned experimental parameters have led to the fabrication of nanomaterials belonging to different chemical families with appropriate compositions and displaying interesting sizes and shapes. It is expected that these outstanding findings will encourage researchers and attract newcomers to continue and extend the exploration of possibilities offered by nature and the design of innovative and safer methodologies towards the synthesis of unique nanomaterials, possessing desired features and exhibiting valuable properties that can be exploited in a profusion of fields.

13.
Enzyme Microb Technol ; 95: 13-27, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27866608

RESUMEN

Phototrophic cell or tissue cultures can produce nanostructured noble metals, oxides and chalcogenides at ambient temperatures and pressures in an aqueous environment and without the need for potentially toxic solvents or the generation of dangerous waste products. These "green" synthesized nanobiomaterials can be used to fabricate biosensors and bio-reporting tools, theranostic vehicles, medical imaging agents, as well as tissue engineering scaffolds and biomaterials. While successful at the lab and experimental scales, significant barriers still inhibit the development of higher capacity processes. While scalability issues in traditional algal bioprocess engineering are well known, such as the controlled delivery of photons and gas-exchange, the large-scale algal synthesis of nanomaterials introduces additional parameters to be understood, i.e., nanoparticle (NP) formation kinetics and mechanisms, biological transport of metal cations and the effect of environmental conditions on the final form of the NPs. Only after a clear understanding of the kinetics and mechanisms can the strain selection, photobioreactor type, medium pH and ionic strength, mean light intensity and other relevant parameters be specified for an optimal bioprocess. To this end, this mini-review will examine the current best practices and understanding of these phenomena to establish a path forward for this technology.


Asunto(s)
Nanoestructuras , Fotobiorreactores , Materiales Biocompatibles , Técnicas Biosensibles , Calcógenos , Diagnóstico por Imagen , Tecnología Química Verde , Humanos , Nanopartículas del Metal , Microalgas/metabolismo , Nanoestructuras/química , Nanotecnología , Óxidos , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA