Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 97(5-1): 052135, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29906852

RESUMEN

Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

2.
Proc Math Phys Eng Sci ; 473(2204): 20170099, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28878555

RESUMEN

We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

3.
Proc Math Phys Eng Sci ; 473(2208): 20170596, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29290735

RESUMEN

The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

4.
Phys Rev Lett ; 113(10): 100603, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238344

RESUMEN

Landauer's principle states that it costs at least kBTln2 of work to reset one bit in the presence of a heat bath at temperature T. The bound of kBTln2 is achieved in the unphysical infinite-time limit. Here we ask what is possible if one is restricted to finite-time protocols. We prove analytically that it is possible to reset a bit with a work cost close to kBTln2 in a finite time. We construct an explicit protocol that achieves this, which involves thermalizing and changing the system's Hamiltonian so as to avoid quantum coherences. Using concepts and techniques pertaining to single-shot statistical mechanics, we furthermore prove that the heat dissipated is exponentially close to the minimal amount possible not just on average, but guaranteed with high confidence in every run. Moreover, we exploit the protocol to design a quantum heat engine that works near the Carnot efficiency in finite time.

5.
Nat Commun ; 5: 4592, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25105741

RESUMEN

The quantum uncertainty principle stipulates that when one observable is predictable there must be some other observables that are unpredictable. The principle is viewed as holding the key to many quantum phenomena and understanding it deeper is of great interest in the study of the foundations of quantum theory. Here we show that apart from being restrictive, the principle also plays a positive role as the enabler of non-classical dynamics in an interferometer. First we note that instantaneous action at a distance should not be possible. We show that for general probabilistic theories this heavily curtails the non-classical dynamics. We prove that there is a trade-off with the uncertainty principle that allows theories to evade this restriction. On one extreme, non-classical theories with maximal certainty have their non-classical dynamics absolutely restricted to only the identity operation. On the other extreme, quantum theory minimizes certainty in return for maximal non-classical dynamics.

6.
Phys Rev Lett ; 104(8): 080402, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20366918

RESUMEN

A remarkable feature of quantum theory is nonlocality (Bell inequality violations). However, quantum correlations are not maximally nonlocal, and it is natural to ask whether there are compelling reasons for rejecting theories in which stronger violations are possible. To shed light on this question, we consider post-quantum theories in which maximally nonlocal states (nonlocal boxes) occur. We show that reversible transformations in such theories are trivial: they consist solely of local operations and permutations of systems. In particular, no correlations can be created; nonlocal boxes cannot be prepared from product states and classical computers can efficiently simulate all such processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA