Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(2): 2106-2113, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297747

RESUMEN

Single-photon avalanche diodes (SPADs) that are sensitive to photons in the Short-wave infrared and extended short-wave infrared (SWIR and eSWIR) spectra are important components for communication, ranging, and low-light level imaging. The high gain, low excess noise factor, and widely tunable bandgap of AlxIn1-xAsySb1-y avalanche photodiodes (APDs) make them a suitable candidate for these applications. In this work, we report single-photon-counting results for a separate absorption, charge, and multiplication (SACM) Geiger-mode SPAD within a gated-quenching circuit. The single-photon avalanche probabilities surpass 80% at 80 K, corresponding with single-photon detection efficiencies of 33% and 12% at 1.55 µm and 2 µm, respectively.

2.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1225-1230, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706776

RESUMEN

In applications where high sensitivity is required, the internal gain mechanism of avalanche photodiodes can provide a performance advantage relative to p-i-n photodiodes. However, this internal gain mechanism leads to an excess noise that scales with gain. This excess noise term can be minimized by using materials systems in which impact ionization is initiated primarily by one carrier type. Recently, two Sb-based materials systems, AlInAsSb and AlGaAsSb, have exhibited exceptionally low excess noise, particularly for III-V compound materials. There are four important considerations that can impact the excess noise measurements in such low-noise materials. These considerations deal with the excess noise factor calculation method, measurement RF frequency, measurement wavelength, and the gain calculation method. In this paper, each of these factors is discussed, and their implications on excess noise are considered.

3.
Opt Express ; 30(15): 27285-27292, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236902

RESUMEN

Mid-IR is a useful wavelength range for both science and military applications due to its low atmospheric attenuation and ability to be used for passive detection. However, many solutions for detecting light in this spectral region need to be operated at cryogenic temperatures as their required narrow bandgaps suffer from carrier recombination and band-to-band tunneling at room temperature leading to high dark currents. These problems can be alleviated by using a separate absorption, charge, and multiplication avalanche photodiode. We have recently demonstrated such a device with a 3-µm cutoff using Al0.15In0.85As0.77Sb0.23, as the absorber, grown on GaSb. Here we investigate Al0.15In0.85As0.77Sb0.23 as a simple PIN homojunction and provide metrics to aid in future designs using this material. PL spectrum measurements indicate a bandgap of 2.94 µm at 300 K. External quantum efficiencies of 39% and 33% are achieved at 1.55 µm and 2 µm respectively. Between 180 K and 280 K the activation energy is ∼0.22 eV, roughly half the bandgap of Al0.15In0.85As0.77Sb0.23, indicating thermal generation is dominant.

4.
Opt Express ; 30(14): 25262-25276, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237060

RESUMEN

We report the frequency response of Al0.3InAsSb/Al0.7InAsSb nBn photodetectors. The 3-dB bandwidth of the devices varies from ∼ 150 MHz to ∼ 700 MHz with different device diameters and saturates with bias voltage immediately after the device turn on. A new equivalent circuit model is developed to explain the frequency behavior of nBn photodetectors. The simulated bandwidth based on the new equivalent circuit model agrees well with the bandwidth and the microwave scattering parameter measurements. The analysis reveals that the limiting factor of the bandwidth of the nBn photodetector is the large diffusion capacitance caused by the minority carrier lifetime and the device area. Additionally, the bandwidth of the nBn photodetector is barely affected by the photocurrent, which is found to be caused by the barrier structure in the nBn photodetector.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA