RESUMEN
Obsessive-compulsive disorder (OCD) is a frequent, disabling disorder with high rates of treatment resistance. Transcranial direct current stimulation (tDCS) is a safe, tolerable noninvasive neuromodulation therapy with scarce evidence for OCD. This double-blind, randomized, and sham-controlled study investigates the efficacy of tDCS as add-on treatment for treatment-resistant OCD (failure to respond to at least one previous pharmacological treatment). On 20 consecutive weekdays (4 weeks), 43 patients with treatment-resistant OCD underwent 30 min active or sham tDCS sessions, followed by a 8 week follow-up. The cathode was positioned over the supplementary motor area (SMA) and the anode over the left deltoid. The primary outcome was the change in baseline Y-BOCS score at week 12. Secondary outcomes were changes in mood and anxiety and the occurrence of adverse events. Response was evaluated considering percent decrease of baseline Y-BOCS scores and the Improvement subscale of the Clinical Global Impression (CGI-I) between baseline and week 12. Patients that received active tDCS achieved a significant reduction of OCD symptoms than sham, with mean (SD) Y-BOCS score changes of 6.68 (5.83) and 2.84 (6.3) points, respectively (Cohen's d: 0.62 (0.06-1.18), p = 0.03). We found no between-group differences in responders (four patients in the active tDCS and one in the sham group). Active tDCS of the SMA was not superior to sham in reducing symptoms of depression or anxiety. Patients in both groups reported mild adverse events. Our results suggest that cathodal tDCS over the SMA is an effective add-on strategy in treatment-resistant OCD.
Asunto(s)
Corteza Motora , Trastorno Obsesivo Compulsivo , Estimulación Transcraneal de Corriente Directa , Método Doble Ciego , Humanos , Trastorno Obsesivo Compulsivo/terapia , Resultado del TratamientoRESUMEN
BACKGROUND: Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. OBJECTIVE: To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. METHODS: Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. RESULTS: Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. CONCLUSION: Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.