Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 9(20): 6149-6163, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30265539

RESUMEN

Thermally activated delayed fluorescence (TADF) offers promise for all-organic light-emitting diodes with quantum efficiencies competing with those of transition-metal-based phosphorescent devices. While computational efforts have so far largely focused on gas-phase calculations of singlet and triplet excitation energies, the design of TADF materials requires multiple methodological developments targeting among others a quantitative description of electronic excitation energetics, fully accounting for environmental electrostatics and molecular conformational effects, the accurate assessment of the quantum mechanical interactions that trigger the elementary electronic processes involved in TADF, and a robust picture for the dynamics of these fundamental processes. In this Perspective, we describe some recent progress along those lines and highlight the main challenges ahead for modeling, which we hope will be useful to the whole TADF community.

2.
J Chem Phys ; 142(19): 194901, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26001478

RESUMEN

In this work, we study in detail the hydrodynamics and the Brownian motions of a spheroidal particle suspended in a Newtonian fluid near a flat rigid wall. We employ 3D Finite Element Method (FEM) simulations to compute how the mobility tensor of the spheroid varies with both the particle-wall separation distance and the particle orientation. We then study the Brownian motion of the spheroid by means of a discretized Langevin equation. We specifically focus on the additional drift terms arising from the position and orientational dependence of the mobility matrix. In this respect, we also propose a numerically convenient approximation of the orientational divergence of the mobility matrix that is required in the solution of the Langevin equation. Our results illustrate that both hydrodynamics and Brownian motions of a spheroidal particle near a confining wall display novel features from those of a sphere in the same type of confinement.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26764688

RESUMEN

We investigate through numerical simulations the dynamics of a neo-Hookean elastic prolate spheroid suspended in a Newtonian fluid under shear flow. Both initial orientations of the particle within and outside the shear plane and both unbounded and confined flow geometries are considered. In unbounded flow, when the particle starts on the shear plane, two stable regimes of motion are found, i.e., trembling, where the particle shape periodically elongates and compresses in the shear plane and the angle between its major semiaxis and the flow direction oscillates around a positive mean value, and tumbling, where the particle shape periodically changes and its major axis performs complete revolutions around the vorticity axis. When the particle is initially oriented out of the shear plane, more complex dynamics arise. Geometric confinement of the particle between the moving walls also influences its deformation and regime of motion. In addition, when the particle is initially located in an asymmetric position with respect to the moving walls, particle lateral migration is detected. The effects on the particle dynamics of the geometric and physical parameters that rule the system are investigated.

4.
Artículo en Inglés | MEDLINE | ID: mdl-24827331

RESUMEN

The motion of an ellipsoidal particle in a viscoelastic liquid subjected to an unconfined shear flow is addressed by numerical simulations. A complex dynamics is found with different transients and long-time regimes depending on the Deborah number De (De is the product of the viscoelastic liquid intrinsic time times the applied shear rate). Spiraling orbits toward a log-rolling motion around the vorticity are observed for low Deborah numbers, whereas the particle aligns with its major axis near to the flow direction at high Deborah numbers. The transition from vorticity to flow alignment is characterized by a periodic regime with small amplitude oscillations around orientations progressively shifting from vorticity to flow direction by increasing De. A range of Deborah numbers is detected such that the periodic solution coexists with the flow alignment regime (bistability). A further range of De is found where flow alignment is attained differently for particles starting far from or next to the shear plane: in the latter case, very long transients are found; hence an effective bistability (metabistability) is predicted to occur in a large time lapse before reaching the fully aligned state. Finally, the computed Deborah number values for flow alignment favorably compare with available experimental data.

5.
Acc Chem Res ; 46(2): 434-43, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23140088

RESUMEN

The extraordinary semiconducting properties of conjugated organic materials continue to attract attention across disciplines including materials science, engineering, chemistry, and physics, particularly with application to organic electronics. Such materials are used as active components in light-emitting diodes, field-effect transistors, or photovoltaic cells, as a substitute for (mostly Si-based) inorganic semiconducting materials. Many strategies developed for inorganic semiconductor device building (doping, p-n junctions, etc.) have been attempted, often successfully, with organics, even though the key electronic and photophysical properties of organic thin films are fundamentally different from those of their bulk inorganic counterparts. In particular, organic materials consist of individual units (molecules or conjugated segments) that are coupled by weak intermolecular forces. The flexibility of organic synthesis has allowed the development of more efficient opto-electronic devices including impressive improvements in quantum yields for charge generation in organic solar cells and in light emission in electroluminescent displays. Nonetheless, a number of fundamental questions regarding the working principles of these devices remain that preclude their full optimization. For example, the role of intermolecular interactions in driving the geometric and electronic structures of solid-state conjugated materials, though ubiquitous in organic electronic devices, has long been overlooked, especially when it comes to these interfaces with other (in)organic materials or metals. Because they are soft and in most cases disordered, conjugated organic materials support localized electrons or holes associated with local geometric distortions, also known as polarons, as primary charge carriers. The spatial localization of excess charges in organics together with low dielectric constant (ε) entails very large electrostatic effects. It is therefore not obvious how these strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.


Asunto(s)
Compuestos Orgánicos/química , Semiconductores , Simulación de Dinámica Molecular , Electricidad Estática
6.
Biotechnol Prog ; 26(6): 1580-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20572293

RESUMEN

In this contribution we investigate the impact of the forcing waveform on the productivity of a continuous bioreactor governed by an unstructured, nonlinear kinetic model. The (periodic) forcing is applied on the substrate concentration in the feed. To this end, some alternative waveforms commonly encountered in practice are evaluated and their performance is compared. An analytical/numerical approach is used. The preliminary analytical step is based on the π-criterion that gives useful information for small amplitudes. The extension to larger amplitudes, when significant improvements are expected, is then performed through a continuation-optimization procedure. It is found that the choice of the specific waveform has an impact on the performance of the process and there is no unique best forcing for any process condition, but its choice depends on the operating parameters and the forcing amplitude and frequency values. Further, the influence of the waveform functions on the wash-out conditions are extensively examined. The analysis shows that all the waveforms examined in this work may lead to significant enlargement of the nontrivial regime with respect to a steady state operation. In particular, square-wave forcing leads in practice to the extinction of the wash-out conditions for any feed substrate concentration and for a well defined choice of the forcing parameters.


Asunto(s)
Reactores Biológicos , Fermentación , Cinética , Modelos Biológicos
7.
Phys Rev Lett ; 95(24): 246001, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16384396

RESUMEN

The stress tensor for a dilute suspension of buoyancy-free, inertialess, non-Brownian, rigid spheres immersed in a viscoelastic liquid is determined via a perturbative expansion. The perturbation parameter is the Deborah number De, giving the ratio between the characteristic time of the liquid and the characteristic time of the imposed flow. The stress is also calculated from numerical simulations of continuity and momentum equations for the single sphere problem. Excellent agreement is found between the two predictions. Good agreement is found also with respect to experimental data found in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA