Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Metab ; 6(5): 880-898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605183

RESUMEN

The obesity epidemic continues to worsen worldwide, driving metabolic and chronic inflammatory diseases. Thiazolidinediones, such as rosiglitazone (Rosi), are PPARγ agonists that promote 'M2-like' adipose tissue macrophage (ATM) polarization and cause insulin sensitization. As ATM-derived small extracellular vesicles (ATM-sEVs) from lean mice are known to increase insulin sensitivity, we assessed the metabolic effects of ATM-sEVs from Rosi-treated obese male mice (Rosi-ATM-sEVs). Here we show that Rosi leads to improved glucose and insulin tolerance, transcriptional repolarization of ATMs and increased sEV secretion. Administration of Rosi-ATM-sEVs rescues obesity-induced glucose intolerance and insulin sensitivity in vivo without the known thiazolidinedione-induced adverse effects of weight gain or haemodilution. Rosi-ATM-sEVs directly increase insulin sensitivity in adipocytes, myotubes and primary mouse and human hepatocytes. Additionally, we demonstrate that the miRNAs within Rosi-ATM-sEVs, primarily miR-690, are responsible for these beneficial metabolic effects. Thus, using ATM-sEVs with specific miRNAs may provide a therapeutic path to induce insulin sensitization.


Asunto(s)
Tejido Adiposo , Vesículas Extracelulares , Resistencia a la Insulina , Macrófagos , Rosiglitazona , Animales , Rosiglitazona/farmacología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Insulina/metabolismo , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Ratones Endogámicos C57BL
3.
Annu Rev Physiol ; 86: 225-253, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345906

RESUMEN

Exosomes are small extracellular vesicles that carry lipids, proteins, and microRNAs (miRNAs). They are released by all cell types and can be found not only in circulation but in many biological fluids. Exosomes are essential for interorgan communication because they can transfer their contents from donor to recipient cells, modulating cellular functions. The miRNA content of exosomes is responsible for most of their biological effects, and changes in exosomal miRNA levels can contribute to the progression or regression of metabolic diseases. As exosomal miRNAs are selectively sorted and packaged into exosomes, they can be useful as biomarkers for diagnosing diseases. The field of exosomes and metabolism is expanding rapidly, and researchers are consistently making new discoveries in this area. As a result, exosomes have great potential for a next-generation drug delivery platform for metabolic diseases.


Asunto(s)
Exosomas , Enfermedades Metabólicas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismo , Enfermedades Metabólicas/metabolismo
4.
Cell Metab ; 35(6): 1009-1021.e9, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084733

RESUMEN

Insulin inhibits gluconeogenesis and stimulates glucose conversion to glycogen and lipids. How these activities are coordinated to prevent hypoglycemia and hepatosteatosis is unclear. Fructose-1,6-bisphosphatase (FBP1) is rate controlling for gluconeogenesis. However, inborn human FBP1 deficiency does not cause hypoglycemia unless accompanied by fasting or starvation, which also trigger paradoxical hepatomegaly, hepatosteatosis, and hyperlipidemia. Hepatocyte FBP1-ablated mice exhibit identical fasting-conditional pathologies along with AKT hyperactivation, whose inhibition reversed hepatomegaly, hepatosteatosis, and hyperlipidemia but not hypoglycemia. Surprisingly, fasting-mediated AKT hyperactivation is insulin dependent. Independently of its catalytic activity, FBP1 prevents insulin hyperresponsiveness by forming a stable complex with AKT, PP2A-C, and aldolase B (ALDOB), which specifically accelerates AKT dephosphorylation. Enhanced by fasting and weakened by elevated insulin, FBP1:PP2A-C:ALDOB:AKT complex formation, which is disrupted by human FBP1 deficiency mutations or a C-terminal FBP1 truncation, prevents insulin-triggered liver pathologies and maintains lipid and glucose homeostasis. Conversely, an FBP1-derived complex disrupting peptide reverses diet-induced insulin resistance.


Asunto(s)
Fructosa , Hipoglucemia , Humanos , Ratones , Animales , Fructosa-Bifosfatasa/genética , Proteínas Proto-Oncogénicas c-akt , Insulina , Hepatomegalia/complicaciones , Hipoglucemia/etiología , Glucosa
5.
Cell Metab ; 34(7): 978-990.e4, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35700738

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a liver disease associated with significant morbidity. Kupffer cells (KCs) produce endogenous miR-690 and, via exosome secretion, shuttle this miRNA to other liver cells, such as hepatocytes, recruited hepatic macrophages (RHMs), and hepatic stellate cells (HSCs). miR-690 directly inhibits fibrogenesis in HSCs, inflammation in RHMs, and de novo lipogenesis in hepatocytes. When an miR-690 mimic is administered to NASH mice in vivo, all the features of the NASH phenotype are robustly inhibited. During the development of NASH, KCs become miR-690 deficient, and miR-690 levels are markedly lower in mouse and human NASH livers than in controls. KC-specific KO of miR-690 promotes NASH pathogenesis. A primary target of miR-690 is NADK mRNA, and NADK levels are inversely proportional to the cellular miR-690 content. These studies show that KCs play a central role in the etiology of NASH and raise the possibility that miR-690 could emerge as a therapeutic for this condition.


Asunto(s)
Materiales Biomiméticos , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Materiales Biomiméticos/farmacología , Fibrosis , Macrófagos del Hígado/patología , Macrófagos del Hígado/fisiología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/genética , Cirrosis Hepática/terapia , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/terapia
6.
J Am Heart Assoc ; 11(4): e024561, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112881

RESUMEN

Background Obesity is an established risk factor for hypertension. Although obesity-induced gut barrier breach leads to the leakage of various microbiota-derived products into host circulation and distal organs, the roles of microbiota in mediating the development of obesity-associated adrenomedullary disorders and hypertension have not been elucidated. We seek to explore the impacts of microbial DNA enrichment on inducing obesity-related adrenomedullary abnormalities and hypertension. Methods and Results Obesity was accompanied by remarkable bacterial DNA accumulation and elevated inflammation in the adrenal glands. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into the adrenal glands in obese mice, causing microbial DNA enrichment. In lean wild-type mice, adrenal macrophages expressed CRIg (complement receptor of the immunoglobulin superfamily) that efficiently blocks the infiltration of gut mEVs. In contrast, the adrenal CRIg+ cell population was greatly decreased in obese mice. In lean CRIg-/- or C3-/- (complement component 3) mice intravenously injected with gut mEVs, adrenal microbial DNA accumulation elevated adrenal inflammation and norepinephrine secretion, concomitant with hypertension. In addition, microbial DNA promoted inflammatory responses and norepinephrine production in rat pheochromocytoma PC12 cells treated with gut mEVs. Depletion of microbial DNA cargo markedly blunted the effects of gut mEVs. We also validated that activation of cGAS (cyclic GMP-AMP synthase)/STING (cyclic GMP-AMP receptor stimulator of interferon genes) signaling is required for the ability of microbial DNA to trigger adrenomedullary dysfunctions in both in vivo and in vitro experiments. Restoring CRIg+ cells in obese mice decreased microbial DNA abundance, inflammation, and hypertension. Conclusions The leakage of gut mEVs leads to adrenal enrichment of microbial DNA that are pathogenic to induce obesity-associated adrenomedullary abnormalities and hypertension. Recovering the CRIg+ macrophage population attenuates obesity-induced adrenomedullary disorders.


Asunto(s)
Hipertensión , Inflamación , Animales , Catecolaminas , ADN Bacteriano , Inflamación/genética , Ratones , Ratones Obesos , Norepinefrina , Obesidad/complicaciones , Obesidad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA