RESUMEN
Abstract DNA vaccines have been evaluated as an option to prevent several diseases. In this study, the capacity of the xanthan biopolymer to improve the DNA vaccines immune response, administered intramuscularly, was evaluated. The experimental vaccines consisted of genes encoding fragments of the proteins LigA and LigB of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-130. The humoral immune response was evaluated by indirect ELISA. Cytokine expression levels were determined by RT-qPCR. Compared to the control group, the IgG antibody levels of animals immunized with pTARGET/ligAni and pTARGET/ligBrep plasmids associated with xanthan biopolymer were significantly higher than the control group. Additionally, there was a significant increase in IL-17 expression in animals vaccinated with pTARGET/ligBrep and xanthan.
Asunto(s)
Animales , Femenino , Ratones , Polisacáridos Bacterianos , ADN Recombinante/farmacología , Adyuvantes Inmunológicos/farmacología , Xanthomonas campestris , Vacunas de ADN/farmacología , Biopolímeros/farmacología , Ensayo de Inmunoadsorción Enzimática , Leptospira interrogans serovar icterohaemorrhagiae , AnticuerposRESUMEN
Background: Mycoplasma hyopneumoniae is the etiological agent of the Swine Mycoplasmal Pneumonia (SMP), one ofthe most economically significant diseases in the swine industry worldwide. Commonly used vaccines for SMP controlconsist of inactivated whole cells (bacterins). These vaccines are efficacious against M. hyopneumoniae challenge, but donot prevent colonization by the pathogen or completely eliminate pneumonia. P97 adhesin is conserved in the M. pneumoniae virulent strains, therefore it is an attractive target to be used in recombinant vaccines against M. hyopneumoniae.The aim of the present study was to evaluate protection afforded by rLTB-R1, a recombinant chimera composed by LTBfused with the R1 repeat region of P97 adhesin of M. hyopneumoniae, in specific-pathogen-free (SPF) piglets vaccinatedby intranasal or intramuscular route and challenged with a pathogenic strain of M. hyopneumoniae.Materials, Methods & Results: PCR products of the LTB and R1 coding sequences were fused, then cloned into pETDEST42 expression vector. The rLTB-R1 was expressed in Escherichia coli BL21 (DE3) Salt induction (SI). The pigletswere divided into three groups: four piglets were intranasally vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBSat 0 and 14 days (IN rLTB-R1 group); four piglets were intramuscularly vaccinated with 1 mg of rLTB-R1 solubilized in 1mL of PBS at 0 and 14 days (IM rLTB-R1 group); three piglets were intranasally and intramuscularly inoculated with 1 mLof PBS (control group). Two weeks after the last immunization (28 day), piglets were intratracheally challenged with 10 mLof a suspension containing 109 color-changing unit (CCU) of pathogenic M. hyopneumoniae 7448 strain on three consecutivedays. Until the challenge (28 days), intranasal and intramuscular vaccination with rLTB-R1 induced seroconversions of antiR1 systemic antibodies of 1.6 and 4.6 ×, respectively. The IN rLTB-R1...(AU)
Asunto(s)
Animales , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma/terapia , Quimera , Porcinos , Vacunas Virales/administración & dosificación , Adhesinas BacterianasRESUMEN
Background: Mycoplasma hyopneumoniae is the etiological agent of the Swine Mycoplasmal Pneumonia (SMP), one ofthe most economically significant diseases in the swine industry worldwide. Commonly used vaccines for SMP controlconsist of inactivated whole cells (bacterins). These vaccines are efficacious against M. hyopneumoniae challenge, but donot prevent colonization by the pathogen or completely eliminate pneumonia. P97 adhesin is conserved in the M. pneumoniae virulent strains, therefore it is an attractive target to be used in recombinant vaccines against M. hyopneumoniae.The aim of the present study was to evaluate protection afforded by rLTB-R1, a recombinant chimera composed by LTBfused with the R1 repeat region of P97 adhesin of M. hyopneumoniae, in specific-pathogen-free (SPF) piglets vaccinatedby intranasal or intramuscular route and challenged with a pathogenic strain of M. hyopneumoniae.Materials, Methods & Results: PCR products of the LTB and R1 coding sequences were fused, then cloned into pETDEST42 expression vector. The rLTB-R1 was expressed in Escherichia coli BL21 (DE3) Salt induction (SI). The pigletswere divided into three groups: four piglets were intranasally vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBSat 0 and 14 days (IN rLTB-R1 group); four piglets were intramuscularly vaccinated with 1 mg of rLTB-R1 solubilized in 1mL of PBS at 0 and 14 days (IM rLTB-R1 group); three piglets were intranasally and intramuscularly inoculated with 1 mLof PBS (control group). Two weeks after the last immunization (28 day), piglets were intratracheally challenged with 10 mLof a suspension containing 109 color-changing unit (CCU) of pathogenic M. hyopneumoniae 7448 strain on three consecutivedays. Until the challenge (28 days), intranasal and intramuscular vaccination with rLTB-R1 induced seroconversions of antiR1 systemic antibodies of 1.6 and 4.6 ×, respectively. The IN rLTB-R1...
Asunto(s)
Animales , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma/terapia , Quimera , Porcinos , Vacunas Virales/administración & dosificación , Adhesinas BacterianasRESUMEN
Background: Mycoplasma hyopneumoniae is the etiological agent of the Swine Mycoplasmal Pneumonia (SMP), one of the most economically significant diseases in the swine industry worldwide. Commonly used vaccines for SMP control consist of inactivated whole cells (bacterins). These vaccines are efficacious against M. hyopneumoniae challenge, but do not prevent colonization by the pathogen or completely eliminate pneumonia. P97 adhesin is conserved in the M. pneumoniae virulent strains, therefore it is an attractive target to be used in recombinant vaccines against M. hyopneumoniae. The aim of the present study was to evaluate protection afforded by rLTB-R1, a recombinant chimera composed by LTB fused with the R1 repeat region of P97 adhesin of M. hyopneumoniae, in specific-pathogen-free (SPF) piglets vaccinated by intranasal or intramuscular route and challenged with a pathogenic strain of M. hyopneumoniae. Materials, Methods & Results: PCR products of the LTB and R1 coding sequences were fused, then cloned into pETDEST42™ expression vector. The rLTB-R1 was expressed in Escherichia coli BL21 (DE3) Salt induction (SI). The piglets were divided into three groups: four piglets were intranasally vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBS at 0 and 14 days (IN rLTB-R1 group); four piglets were intramuscularly vaccinated with 1 mg of rLTB-R1 solubilized in 1 mL of PBS at 0 and 14 days (IM rLTB-R1 group); three piglets were intranasally and intramuscularly inoculated with 1 mL of PBS (control group). Two weeks after the last immunization (28 day), piglets were intratracheally challenged with 10 mL of a suspension containing 109 color-changing unit (CCU) of pathogenic M. hyopneumoniae 7448 strain on three consecutive days. Until the challenge (28 days), intranasal and intramuscular vaccination with rLTB-R1 induced seroconversions of antiR1 systemic antibodies of 1.6 and 4.6 ×, respectively. The IN rLTB-R1 group had no pulmonary lesion, rLTB-R1 conferred protection against experimental SMP. On the other hand, IM rLTB-R1 and control groups had on average 7.24% and 8.46% of pulmonary lesion, respectively, showing that intramuscular vaccination with rLTB-R1 did not confer protection. Discussion: The rLTB-R1, when intranasally administrated to mice, elicited production of anti-R1 IgA in trachea and bronchi as well as specific Th1 response, suggesting an adequate stimulation of the mucosal immune system. We believe that rLTB-R1 induced a similar immune response in piglets intranasally vaccinated, conferring protection against experimental SMP. The present study, the rLTB-R1 alone, without any chemical adjuvant, stimulated a significant seroconversion of anti-R1 systemic antibodies in pigs intramuscularly vaccinated, showing the potential of LTB as a parenteral adjuvant in swine vaccination. Previous work has shown that the intramuscular administration route was evaluated in pigs because mice intramuscularly vaccinated with rLTB-R1 presented significant levels of anti-R1 IgA in trachea and bronchi, suggesting that rLTB can stimulate some degree of mucosal immunity even if not delivered by a mucosal route. However, in the present study, piglets intramuscularly vaccinated with rLTB-R1 presented high levels of anti-R1 systemic antibodies, they were not protected. On the other hand, intranasal vaccination of piglets with rLTB-R1 elicited low levels of antiR1 systemic antibodies (1.6 × at 28 days), but it conferred full protection against experimental SMP. The present study demonstrated that intranasal vaccination of piglets with rLTB-R1 conferred protection against experimental SMP. A more detailed analysis of the protective immune response induced by rLTB-R1 in pigs is currently being performed.
RESUMEN
The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38â¯kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria.
Asunto(s)
Queso/microbiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Resistencia a la Tetraciclina/genética , Conjugación Genética/genética , Manipulación de Alimentos , Microbiología de Alimentos/métodos , Transferencia de Gen Horizontal/genética , Genes Bacterianos/efectos de los fármacos , Genes Bacterianos/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Reacción en Cadena de la PolimerasaRESUMEN
BACKGROUND: The B subunit of Escherichia coli heat-labile enterotoxin (LTB) is a potent mucosal immune adjuvant. However, there is little information about LTB's potential as a parenteral adjuvant. OBJECTIVES: We aimed at evaluating and better understanding rLTB's potential as a parenteral adjuvant using the fused R1 repeat of Mycoplasma hyopneumoniae P97 adhesin as an antigen to characterise the humoral immune response induced by this construct and comparing it to that generated when aluminium hydroxide is used as adjuvant instead. METHODS: BALB/c mice were immunised intraperitoneally with either rLTBR1 or recombinant R1 adsorbed onto aluminium hydroxide. The levels of systemic anti-rR1 antibodies (total Ig, IgG1, IgG2a, and IgA) were assessed by enzyme-linked immunosorbent assay (ELISA). The ratio of IgG1 and IgG2a was used to characterise a Th1, Th2, or mixed Th1/Th2 immune response. FINDINGS: Western blot confirmed rR1, either alone or fused to LTB, remained antigenic; anti-cholera toxin ELISA confirmed that LTB retained its activity when expressed in a heterologous system. Mice immunised with the rLTBR1 fusion protein produced approximately twice as much anti-rR1 immunoglobulins as mice vaccinated with rR1 adsorbed onto aluminium hydroxide. Animals vaccinated with either rLTBR1 or rR1 adsorbed onto aluminium hydroxide presented a mixed Th1/Th2 immune response. We speculate this might be a result of rR1 immune modulation rather than adjuvant modulation. Mice immunised with rLTBR1 produced approximately 1.5-fold more serum IgA than animals immunised with rR1 and aluminium hydroxide. MAIN CONCLUSIONS: The results suggest that rLTB is a more powerful parenteral adjuvant than aluminium hydroxide when administered intraperitoneally as it induced higher antibody titres. Therefore, we recommend that rLTB be considered an alternative adjuvant, even if different administration routes are employed.
Asunto(s)
Adhesinas Bacterianas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Toxinas Bacterianas/administración & dosificación , Enterotoxinas/administración & dosificación , Proteínas de Escherichia coli/administración & dosificación , Mycoplasma hyopneumoniae/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Hidróxido de Aluminio , Animales , Toxinas Bacterianas/inmunología , Enterotoxinas/inmunología , Ensayo de Inmunoadsorción Enzimática , Proteínas de Escherichia coli/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Neumonía Porcina por Mycoplasma/inmunología , PorcinosRESUMEN
BACKGROUND The B subunit of Escherichia coli heat-labile enterotoxin (LTB) is a potent mucosal immune adjuvant. However, there is little information about LTB's potential as a parenteral adjuvant. OBJECTIVES We aimed at evaluating and better understanding rLTB's potential as a parenteral adjuvant using the fused R1 repeat of Mycoplasma hyopneumoniae P97 adhesin as an antigen to characterise the humoral immune response induced by this construct and comparing it to that generated when aluminium hydroxide is used as adjuvant instead. METHODS BALB/c mice were immunised intraperitoneally with either rLTBR1 or recombinant R1 adsorbed onto aluminium hydroxide. The levels of systemic anti-rR1 antibodies (total Ig, IgG1, IgG2a, and IgA) were assessed by enzyme-linked immunosorbent assay (ELISA). The ratio of IgG1 and IgG2a was used to characterise a Th1, Th2, or mixed Th1/Th2 immune response. FINDINGS Western blot confirmed rR1, either alone or fused to LTB, remained antigenic; anti-cholera toxin ELISA confirmed that LTB retained its activity when expressed in a heterologous system. Mice immunised with the rLTBR1 fusion protein produced approximately twice as much anti-rR1 immunoglobulins as mice vaccinated with rR1 adsorbed onto aluminium hydroxide. Animals vaccinated with either rLTBR1 or rR1 adsorbed onto aluminium hydroxide presented a mixed Th1/Th2 immune response. We speculate this might be a result of rR1 immune modulation rather than adjuvant modulation. Mice immunised with rLTBR1 produced approximately 1.5-fold more serum IgA than animals immunised with rR1 and aluminium hydroxide. MAIN CONCLUSIONS The results suggest that rLTB is a more powerful parenteral adjuvant than aluminium hydroxide when administered intraperitoneally as it induced higher antibody titres. Therefore, we recommend that rLTB be considered an alternative adjuvant, even if different administration routes are employed.