Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15857, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739998

RESUMEN

The use of in vivo spectroscopy to detect plant stress in its early stages has the potential to enhance food safety and reduce the need for plant protection products. However, differentiating between various stress types before symptoms appear remains poorly studied. In this study, we investigated the potential of Vis-NIR spectroscopy to differentiate between stress types in apple trees (Malus x domestica Borkh.) exposed to apple scab, waterlogging, and herbicides in a greenhouse. Using a spectroradiometer, we collected spectral signatures of leaves still attached to the tree and utilized machine learning techniques to develop predictive models for detecting stress presence and classifying stress type as early as 1-5 days after exposure. Our findings suggest that changes in spectral reflectance at multiple regions accurately differentiate various types of plant stress on apple trees. Our models were highly accurate (accuracies between 0.94 and 1) when detecting the general presence of stress at an early stage. The wavelengths important for classification relate to photosynthesis via pigment functioning (684 nm) and leaf water (~ 1800-1900 nm), which may be associated with altered gas exchange as a short-term stress response. Overall, our study demonstrates the potential of spectral technology and machine learning for early diagnosis of plant stress, which could lead to reduced environmental burden through optimizing resource utilization in agriculture.


Asunto(s)
Magnoliopsida , Malus , Espectroscopía Infrarroja Corta , Diagnóstico Precoz , Agricultura , Aprendizaje Automático
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123246, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586278

RESUMEN

'Candidatus Phytoplasma mali' is the bacterial agent associated with Apple Proliferation, a disease that causes high economic losses in affected commercial apple growing regions. The identification of the disease is carried out by visual inspection performed by skilled professionals in the orchards. To confirm an infection, costly molecular laboratory methods must be applied. Furthermore, both methods are very time-consuming. Here, we analysed the potential of a non-destructive method using in-field measurements to differentiate infected from non-infected apple trees (Malus domestica) based on spectral signatures of fresh leaves. By using multivariate statistics, we were able to distinguish infected from non-infected trees and identified the wavelengths relevant for the differentiation. Factors affecting the differentiation performance were the sampling date and bacterial colonization behaviour.


Asunto(s)
Malus , Phytoplasma , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA