Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768864

RESUMEN

The papillomavirus (PV) E2 protein is a DNA binding, protein interaction platform that recruits viral and host factors necessary for transcription and replication. We recently discovered phosphorylation of a tyrosine (Y102) in bovine PV (BPV) E2. To identify the responsible factor, we tested several candidate tyrosine kinases that are highly expressed in keratinocytes for binding to BPV-1 E2. Fibroblast growth factor receptor 3 (FGFR3) coimmunoprecipitated with the BPV-1 E2 protein, as did human papillomavirus 31 (HPV-31) E2, which also colocalized with FGFR3 within the nucleus. A constitutively active mutant form of FGFR3 decreased BPV-1 and HPV-31 transient replication although this result also occurred in a BPV-1 E2 mutant lacking a previously identified phosphorylation site of interest (Y102). Furthermore, FGFR3 depletion in cell lines that maintain HPV-31 episomes increased viral copy number. These results suggest that FGFR3 kinase activity may regulate the PV reproductive program through phosphorylation of the E2 protein although this is unlikely to occur through the Y102 residue of HPV E2.IMPORTANCE The papillomavirus (PV) is a double-stranded DNA tumor virus infecting cervix, mouth, and throat tissues. The viral protein E2 is responsible for the replication of the virus. Understanding the mechanisms of the replicative life cycle of the virus may bring to light direct targets and treatments against viral infection. We recently found that the fibroblast growth factor receptor 3 (FGFR3) interacts with and mediates PV E2 function through phosphorylation of the E2 protein. Our study suggests that the function of the E2 protein may be regulated through a direct FGFR3 target during the maintenance stage of the PV life cycle.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 31/fisiología , Proteínas Oncogénicas Virales/metabolismo , Fosfotransferasas/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Bovinos , Replicación del ADN , Papillomavirus Humano 31/enzimología , Humanos , Fosforilación , Plásmidos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Tirosina/química
2.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807239

RESUMEN

Papillomaviruses are small, double-stranded DNA viruses that encode the E2 protein, which controls transcription, replication, and genome maintenance in infected cells. Posttranslational modifications (PTMs) affecting E2 function and stability have been demonstrated for multiple types of papillomaviruses. Here we describe the first phosphorylation event involving a conserved tyrosine (Y) in the bovine papillomavirus 1 (BPV-1) E2 protein at amino acid 102. While its phosphodeficient phenylalanine (F) mutant activated both transcription and replication in luciferase reporter assays, a mutant that may act as a phosphomimetic, with a Y102-to-glutamate (E) mutation, lost both activities. The E2 Y102F protein interacted with cellular E2-binding factors and the viral helicase E1; however, in contrast, the Y102E mutant associated with only a subset and was unable to bind to E1. While the Y102F mutant fully supported transient viral DNA replication, BPV genomes encoding this mutation as well as Y102E were not maintained as stable episomes in murine C127 cells. These data imply that phosphorylation at Y102 disrupts the helical fold of the N-terminal region of E2 and its interaction with key cellular and viral proteins. We hypothesize that the resulting inhibition of viral transcription and replication in basal epithelial cells prevents the development of a lytic infection. IMPORTANCE: Papillomaviruses (PVs) are small, double-stranded DNA viruses that are responsible for cervical, oropharyngeal, and various genitourinary cancers. Although vaccines against the major oncogenic human PVs are available, there is no effective treatment for existing infections. One approach to better understand the viral replicative cycle, and potential therapies to target it, is to examine the posttranslational modification of viral proteins and its effect on function. Here we have discovered that the bovine papillomavirus 1 (BPV-1) transcription and replication regulator E2 is phosphorylated at residue Y102. While a phosphodeficient mutant at this site was fully functional, a phosphomimetic mutant displayed impaired transcription and replication activity as well as a lack of an association with certain E2-binding proteins. This study highlights the influence of posttranslational modifications on viral protein function and provides additional insight into the complex interplay between papillomaviruses and their hosts.


Asunto(s)
Papillomavirus Bovino 1/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Transcripción Genética , Tirosina/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Alphapapillomavirus/fisiología , Animales , Bovinos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Genoma Viral , Humanos , Modelos Moleculares , Mutación , Fosforilación , Plásmidos/genética , Conformación Proteica , Transporte de Proteínas , Proteínas Virales/química , Proteínas Virales/genética
3.
J Virol ; 87(3): 1497-507, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23152516

RESUMEN

The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillomavirus gene expression.


Asunto(s)
Papillomavirus Bovino 1/genética , Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Lisina/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Bovinos , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA