Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Onco Targets Ther ; 10: 2527-2538, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28546757

RESUMEN

BACKGROUND: Increasing evidence indicates that radioresistance remains a major problem in the treatment of patients with esophageal squamous cell carcinoma (ESCC). This study was designed to investigate the expression of microRNA-381 (miR-381) and its function in the radioresistance of ESCC. METHODS: In this study, miR-381 expression was first detected in ESCC cell lines and tissue samples by quantitative real-time polymerase chain reaction (qRT-PCR). Then, the effects of miR-381 expression on growth, apoptosis, and radiosensitivity of ESCC cells were analyzed by MTT, colony formation, and flow cytometry, respectively. Dual-luciferase reporter assays were performed to validate the regulation of a putative target of miR-381, in corroboration with qRT-PCR and Western blotting assays. RESULTS: ESCC cell lines or tissues were found to express significantly lower miR-381 than normal esophageal epithelial cells or adjacent normal tissues, respectively. Ectopic expression of miR-381 in ESCC cell lines blocked proliferation, reduced colony formation, enhanced apoptosis, and increased radiosensitivity by enhancing irradiation-induced apoptosis. In addition, dual-luciferase reporter assays showed that miR-381 binds to the 3'-untranslated region of X-linked inhibitor of apoptosis protein (XIAP), suggesting that XIAP should be a direct target of miR-381. Re-expression of miR-381 suppressed XIAP protein expression in ESCC cells, and the effects of miR-381 upregulation on ESCC cells were found to be similar with silencing of XIAP. In addition, XIAP mRNA expression significantly increased in ESCC tissues and was inversely correlated with miR-381 expression. CONCLUSION: The results of this study suggest that miR-381/XIAP pathway contributed to the growth inhibition, increase in apoptosis, and enhancement of radiosensitivity in ESCC cells Therefore, miR-381 may be a potential therapeutic target in human ESCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA