Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 46(9): 1408-10, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17334429

RESUMEN

According to Preston [J. Soc. Glass Technol. 11, 214 (1927)], the wear on a glass point in the polishing process is proportional to the work given by frictional force between glass and tool. He supposed that the frictional coefficient is a constant value. To verify this hypothesis, we measured the dragging forces applied to a tool as a function of the relative speed between a rotating glass and the tool center. To reproduce these experimental results, it was necessary to propose a new model, for which the frictional coefficient has a Gaussian dependence with relative speed. Therefore the wearing Preston equation has to be modified in order to include the frictional coefficient as a function of the relative speed.

2.
Appl Opt ; 44(8): 1434-41, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15796242

RESUMEN

It is difficult to calculate the wear produced by free-pinned tools because their angular movement is not entirely predictable. We analyze the wear produced with free-pinned ring tools, using both simulations and experiments. We conclude that the wear of an incomplete ring is directly proportional to the ring's angular size, independently of the mean radius of the ring. We present an algorithm for calculation of the wear produced by free-pinned petal tools, as they can be considered a linear combination of incomplete free-pinned ring tools. Finally, we apply this result to the enhancement of a defective flat surface and to making a concave spheric surface.

3.
Appl Opt ; 43(6): 1250-4, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-15008526

RESUMEN

In a polishing process the wear is greater at the edge when the tool extends beyond the border of the workpiece. To explain this effect, we propose a new model in which the pressure is higher at the edge. This model is applied to the case of a circular tool that polishes a circular workpiece. Our model correctly predicts that a greater amount of material is removed from the edge of the workpiece.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA