Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 881: 163367, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37044345

RESUMEN

Plastic accumulation in the world amounts to approximately 8300 million tons. Polyurethanes (PU) account for 7.7 % of total plastics production worldwide, and their diverse chemical composition makes them highly recalcitrant to biodegradation. Several works have reported polyurethane-degrading microbial communities. However, it is still necessary to learn more about the chemical, biochemical, and genetic bases linked to the polyurethanolytic phenotype and the microbial taxonomic determinants responsible for metabolizing the PU polymer and its associated chemical additives. To shed light on this problem, we applied physical, chemical, biochemical, metagenomic, and bioinformatic analyses to explore the biodegradation capability and related biochemical and genetic determinants of the BP6 microbial community that can grow in PolyLack, a commercial coating containing a polyether polyurethane acrylate (PE-PU-A) copolymer and several additives, as sole carbon source. We observed complete additives (isopropanol, N-methyl-2-pyrrolidone, 2-butoxyethanol, alkyl glycol ethers) biodegradation and the appearance of released polymer components (toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) derivatives), and multiple degradation products since early cultivation times. The Hi-C metagenomic analysis identified a complex microbiome with 35 deconvolved Metagenome-Assembled Genomes (MAGs) - several new species - and biodegradation markers that suggest the coexistence of hydrolytic, oxidative, and reductive metabolic strategies for degrading the additives and the PU copolymer. This work also provides evidence of the metabolic capability the BP6 community has for biodegrading polyether polyurethane foams. Based on these analyses, we propose a novel metabolic pathway for 4,4'-methylenedianiline (MDA), an initial biodegradation intermediate of MDI-based PU, encoded in the complex BP6 community metagenome and suggest that this community is a potential biotechnological tool for PU bio-recycling.


Asunto(s)
Microbiota , Poliuretanos , Poliuretanos/química , Metagenoma , Plásticos , Biodegradación Ambiental , Instalaciones de Eliminación de Residuos
2.
Front Microbiol ; 10: 2986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038514

RESUMEN

Polyurethanes (PU) are the sixth most produced plastics with around 18-million tons in 2016, but since they are not recyclable, they are burned or landfilled, generating damage to human health and ecosystems. To elucidate the mechanisms that landfill microbial communities perform to attack recalcitrant PU plastics, we studied the degradative activity of a mixed microbial culture, selected from a municipal landfill by its capability to grow in a water PU dispersion (WPUD) as the only carbon source, as a model for the BP8 landfill microbial community. The WPUD contains a polyether-polyurethane-acrylate (PE-PU-A) copolymer and xenobiotic additives (N-methylpyrrolidone, isopropanol and glycol ethers). To identify the changes that the BP8 microbial community culture generates to the WPUD additives and copolymer, we performed chemical and physical analyses of the biodegradation process during 25 days of cultivation. These analyses included Nuclear magnetic resonance, Fourier transform infrared spectroscopy, Thermogravimetry, Differential scanning calorimetry, Gel permeation chromatography, and Gas chromatography coupled to mass spectrometry techniques. Moreover, for revealing the BP8 community structure and its genetically encoded potential biodegradative capability we also performed a proximity ligation-based metagenomic analysis. The additives present in the WPUD were consumed early whereas the copolymer was cleaved throughout the 25-days of incubation. The analysis of the biodegradation process and the identified biodegradation products showed that BP8 cleaves esters, C-C, and the recalcitrant aromatic urethanes and ether groups by hydrolytic and oxidative mechanisms, both in the soft and the hard segments of the copolymer. The proximity ligation-based metagenomic analysis allowed the reconstruction of five genomes, three of them from novel species. In the metagenome, genes encoding known enzymes, and putative enzymes and metabolic pathways accounting for the biodegradative activity of the BP8 community over the additives and PE-PU-A copolymer were identified. This is the first study revealing the genetically encoded potential biodegradative capability of a microbial community selected from a landfill, that thrives within a WPUD system and shows potential for bioremediation of polyurethane- and xenobiotic additives-contamitated sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA