Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 8(4)2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30413063

RESUMEN

We report the optimization of detergent-mediated reconstitution of an integral membrane-bound protein, full-length influenza M2 protein, by direct insertion into detergent-saturated liposomes. Detergent-mediated reconstitution is an important method for preparing proteoliposomes for studying membrane proteins, and must be optimized for each combination of protein and membrane constituents used. The purpose of the reconstitution was to prepare samples for site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) studies. Our goals in optimizing the protocol were to minimize the amount of detergent used, reduce overall proteoliposome preparation time, and confirm the removal of all detergent. The liposomes were comprised of (1-palmitoyl-2-oleyl-sn-glycero-phosphocholine (POPC) and 1-palmitoyl-2-oleyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG), and the detergent octylglucoside (OG) was used for reconstitution. Rigorous physical characterization was applied to optimize each step of the reconstitution process. We used dynamic light scattering (DLS) to determine the amount of OG needed to saturate the preformed liposomes. During detergent removal by absorption with Bio-Beads, we quantified the detergent concentration by means of a colorimetric assay, thereby determining the number of Bio-Bead additions needed to remove all detergent from the final proteoliposomes. We found that the overnight Bio-Bead incubation used in previously published protocols can be omitted, reducing the time needed for reconstitution. We also monitored the size distribution of the proteoliposomes with DLS, confirming that the size distribution remains essentially constant throughout the reconstitution process.

2.
Nat Commun ; 2: 364, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21694712

RESUMEN

Many nanoscale systems are known to emit light intermittently under continuous illumination. In the fluorescence of single semiconductor nanoparticles, the distributions of bright and dark periods ('on' and 'off' times) follow Lévy statistics. Although fluorescence from single-quantum dots and from macroscopic quantum dot ensembles has been studied, there has been little study of fluorescence from small ensembles. Here we show that blinking nanorods (NRs) interact with each other in a cluster, and the interactions affect the blinking statistics. The on-times in the fluorescence of a NR cluster increase dramatically; in a cluster with N NRs, the maximum on-time increases by a factor of N or more compared with the combined signal from N well-separated NRs. Our study emphasizes the use of statistical properties in identifying the collective dynamics. The scaling of this interaction-induced increase of on-times with number of NRs reveals a novel collective effect at the nanoscale.


Asunto(s)
Fluorescencia , Nanotubos/química , Semiconductores , Microscopía Electrónica de Transmisión , Compuestos de Silicona , Factores de Tiempo , Tolueno
3.
Nano Lett ; 10(5): 1692-8, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20364845

RESUMEN

Since its initial discovery just over a decade ago, blinking of semiconductor nanocrystals has typically been described in terms of probability distributions for durations of bright, or "on," states and dark, or "off," states. These distributions are obtained by binning photon counts in order to construct a time series for emission intensity and then applying a threshold to distinguish on states from off states. By examining experimental data from CdSe/ZnS core/shell nanocrystals and by simulating this data according to a simple, two-state blinking model, we find that the apparent truncated power-law distributions of on times can depend significantly on the choices of binning time and threshold. For example, increasing the binning time by a factor of 10 can double the apparent truncation time and change the apparent power-law exponent by 30%, even though the binning time is only 3% of the truncation time. Our findings indicate that stringent experimental conditions are needed to accurately determine blinking-time probability distributions. Similar considerations should apply to any phenomenon characterized by time series data that displays telegraph noise.


Asunto(s)
Artefactos , Cristalización/métodos , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Semiconductores , Simulación por Computador , Interpretación Estadística de Datos , Conductividad Eléctrica , Modelos Estadísticos , Conformación Molecular , Tamaño de la Partícula
4.
Nano Lett ; 8(11): 4020-6, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18844430

RESUMEN

We report fluorescence of single semiconductor nanorods (NRs) and few-NR clusters, correlated with transmission electron microscopy for direct determination of the number of NRs present in a single fluorescent source. For samples drop-cast from dilute solutions, we show that the majority of the blinking sources (approximately 75%) are individual NRs while the remaining sources are small clusters consisting of up to 15 NRs. Clusters containing two or three NRs exhibit intermittent fluorescence intensity trajectories, I(t), similar to those of individual NRs. The associated statistical parameters of on- and off-time probability densities for two- and three-NR clusters are indistinguishable from those of individual NRs. In contrast, statistically distinguishable blinking parameters are observed for clusters of five or more particles. In particular, the "truncation time" of the on-time probability density, i.e., the time characterizing the transition from a power law to an exponential decay, was found to increase superlinearly with the number of particles. Our long (2.4 x 10(4) s) blinking measurements also directly reveal the previously unobserved truncation of the power law distribution of the off-times for single nanoparticles.

5.
Nano Lett ; 8(7): 2087-91, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18540658

RESUMEN

We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.

6.
J Phys Chem B ; 110(46): 23221-7, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17107169

RESUMEN

We report fluorescence blinking statistics measured from single CdSe nanorods (NRs) of seven different sizes with aspect ratios ranging from 3 to 11. This study also included core/shell CdSe/ZnSe NRs and core NRs with two different surface ligands producing different degrees of surface passivation. We compare the findings for NRs to our measurements of blinking statistics from spherical CdSe core and CdSe/ZnS core/shell nanocrystals (NCs). We find that, for both NRs and spherical NCs, the off-time probability distributions are well described by a power law, while the on-time probability distributions are best described by a truncated power law, P(tau(on)) approximately tau(on)(-alpha)e((-tau)(on)/(tau)(c)). The measured crossover time, tau(c), is indistinguishable within experimental uncertainty for core and core/shell NRs, as well as for core NRs with different ligands, for the same core size, indicating that surface passivation does not affect the blinking statistics significantly. We find that, at fixed excitation intensity, 1/tau(c) increases approximately linearly with increasing NR aspect ratio; for a given sample, 1/tau(c) increases very gradually with increasing excitation intensity. Examining 1/tau(c)versus the single-particle photon absorption rate for all samples indicates that the change in NR absorption cross section with sample size can account for some but not all of the differences in crossover time. This suggests that the degree of quantum confinement may be partially responsible for the aspect ratio dependence of the crossover time.


Asunto(s)
Compuestos de Cadmio/química , Nanoestructuras/química , Compuestos de Selenio/química , Distribuciones Estadísticas , Absorción , Fluorescencia , Fotones , Probabilidad , Espectrofotometría , Factores de Tiempo , Compuestos de Zinc/química
7.
Opt Lett ; 30(14): 1773-5, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16092341

RESUMEN

We investigated the current-voltage characteristics and responsivity of photodiodes fabricated with silicon that was microstructured by use of femtosecond-laser pulses in a sulfur-containing atmosphere. The photodiodes that we fabricated have a broad spectral response ranging from the visible to the near infrared (400-1600 nm). The responsivity depends on substrate doping, microstructuring fluence, and annealing temperature. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, 2 orders of magnitude higher than for standard silicon photodiodes. For wavelengths below the bandgap we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA