Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107988

RESUMEN

The Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in Drosophila melanogaster. To date, more than 20 mutants have been studied across 20 institutions, and our scientific data have led to eleven publications with more than 500 students as authors. To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students' perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities. Our data, collected over three academic years and involving 14 institutions and 480 students, show gains in these metrics after completion of the Fly-CURE across all student subgroups analyzed, including comparisons of gender, academic status, racial and ethnic groups, and parents' educational background. Importantly, our data also show differential gains in the areas of self-efficacy and interest in seeking additional research opportunities between Fly-CURE students with and without prior research experience, illustrating the positive impact of research exposure (dosage) on student outcomes. Altogether, our data indicate that the Fly-CURE experience has a significant impact on students' efficacy with research methods, sense of belonging to the scientific research community, and interest in pursuing additional research experiences.

2.
bioRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36712137

RESUMEN

The Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in Drosophila melanogaster. To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students' perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities. Our data show gains in these metrics after completion of the Fly-CURE across all student subgroups analyzed, including comparisons of gender, academic status, racial and ethnic groups, and parents' educational background. Importantly, our data also show differential gains in the areas of self-efficacy and interest in seeking additional research opportunities between Fly-CURE students with and without prior research experience, illustrating the positive impact of research exposure (dosage) on student outcomes. Altogether, our data indicate that the Fly-CURE experience has a significant impact on students' efficacy with research methods, sense of belonging to the scientific community, and interest in pursuing additional research experiences.

3.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052165

RESUMEN

The majority of patients with high-grade serous ovarian cancer (HGSOC) initially respond to chemotherapy; however, most will develop chemotherapy resistance. Gene signatures may change with the development of chemotherapy resistance in this population, which is important as it may lead to tailored therapies. The objective of this study was to compare tumor gene expression profiles in patients before and after treatment with neoadjuvant chemotherapy (NACT). Tumor samples were collected from six patients diagnosed with HGSOC before and after administration of NACT. RNA extraction and whole transcriptome sequencing was performed. Differential gene expression, hierarchical clustering, gene set enrichment analysis, and pathway analysis were examined in all of the samples. Tumor samples clustered based on exposure to chemotherapy as opposed to patient source. Pre-NACT samples were enriched for multiple pathways involving cell cycle growth. Post-NACT samples were enriched for drug transport and peroxisome pathways. Molecular subtypes based on the pre-NACT sample (differentiated, mesenchymal, proliferative and immunoreactive) changed in four patients after administration of NACT. Multiple changes in tumor gene expression profiles after exposure to NACT were identified from this pilot study and warrant further attention as they may indicate early changes in the development of chemotherapy resistance.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Transcriptoma , Anciano , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Neoplasias Ováricas/metabolismo
4.
Oncogene ; 24(41): 6269-80, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16007202

RESUMEN

Three distinct proliferative signals for multiple myeloma (MM) cell lines induce enhancer of zeste homolog 2 (ezh 2) transcript expression. EZH 2 is a polycomb group protein that mediates repression of gene transcription at the chromatin level through its methyltransferase activity. Normal bone marrow plasma cells do not express ezh2; however, gene expression is induced and correlates with tumor burden during progression of this disease. We therefore investigated how EZH 2 expression is deregulated in MM cell lines and determined the consequence of this activity on proliferation and transformation. We found that EZH 2 protein expression is induced by interleukin 6 (IL-6) in growth factor-dependent cell lines and is constitutive in IL-6-independent cell lines. Furthermore, EZH 2 expression correlates with proliferation and B-cell terminal differentiation. Significantly, EZH 2 protein inhibition by short interference RNA treatment results in MM cell growth arrest. Conversely, EZH 2 ectopic overexpression induces growth factor independence. We found that the growth factor-independent proliferative phenotype in MM cell lines harboring a mutant N- or K-ras gene requires EZH 2 activity. Finally, this is the first report to demonstrate that EZH 2 has oncogenic activity in vivo, and that cell transformation and tumor formation require histone methyltransferase activity.


Asunto(s)
División Celular/genética , Proteínas de Unión al ADN/genética , Genes ras , Mieloma Múltiple/genética , Mutación , Factores de Transcripción/genética , Animales , Catálisis , Diferenciación Celular , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple/patología , Células 3T3 NIH , Fenotipo , Complejo Represivo Polycomb 2 , Factores de Transcripción/metabolismo
5.
Blood ; 102(7): 2581-92, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12791645

RESUMEN

ANBL-6, a myeloma cell line, proliferates in response to interleukin 6 (IL-6) stimulation, coculture with bone marrow stromal cells, and when harboring a constitutively active mutant N-ras gene. Eighteen samples, including 4 IL-6-treated, 3 mutant N-ras-transfected, 3 normal stroma-stimulated, 2 multiple myeloma (MM) stroma-stimulated, and 6 untreated controls were profiled using microarrays interrogating 12 626 genes. Global hierarchical clustering analysis distinguished at least 6 unique expression signatures. Notably, the different stimuli altered distinct functional gene programs. Class comparison analysis (P =.001) revealed 138 genes (54% involved in cell cycle) that distinguished IL-6-stimulated versus nontreated samples. Eighty-seven genes distinguished stroma-stimulated versus IL-6-treated samples (22% encoded for extracellular matrix [ECM] proteins). A total of 130 genes distinguished N-ras transfectants versus IL-6-treated samples (26% involved in metabolism). A total of 157 genes, 20% of these involved in signaling, distinguished N-ras from stroma-interacting samples. All 3 stimuli shared 347 genes, mostly of metabolic function. Genes that distinguished MM1 from MM4 clinical groups were induced at least by one treatment. Notably, only 3 genes (ETV5, DUSP6, and KIAA0735) are uniquely induced in mutant ras-containing cells. We have demonstrated gene expression patterns in myeloma cells that distinguish an intrinsic genetic transformation event and patterns derived from both soluble factors and cell contacts in the bone marrow microenvironment.


Asunto(s)
Perfilación de la Expresión Génica , Genes ras/fisiología , Interleucina-6/farmacología , Mieloma Múltiple/genética , Células del Estroma/citología , Células de la Médula Ósea/citología , Comunicación Celular/fisiología , División Celular/efectos de los fármacos , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Células Tumorales Cultivadas/citología , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA