Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Endocrine ; 53(2): 585-94, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27038317

RESUMEN

Prolactin is an anterior pituitary hormone necessary for fertility, pregnancy maintenance, lactation, and aspects of maternal behavior. In rodents, there is a surge of prolactin on the afternoon of proestrus, and a semi-circadian pattern of prolactin surges during early pregnancy, with a diurnal and nocturnal surge every day. Both of these patterns can be replicated in ovariectomized rats. A prior study demonstrated that central antagonism of κ-opioid receptors, the target of dynorphin, largely abolished the nocturnal prolactin surge in pregnant rats. We build on this to determine whether dynorphin, perhaps from the arcuate population that co-express kisspeptin, neurokinin B, and dynorphin (KNDy neurons), also contributes to the estradiol- or cervical stimulation-induced surges in ovariectomized rats. Ovariectomized rats were treated with either estradiol or cervical stimulation to induce prolactin surge(s). Blood samples were taken around the expected surge time to determine the effect of either acute κ-opioid receptor antagonism or previous chemical ablation of the KNDy population on prolactin levels. Dynorphin antagonism does significantly disrupt the nocturnal prolactin surge, but it does not contribute to the estradiol-induced surge. Chemical ablation of KNDy neurons had opposite effects; ablation of 40 % of the KNDy neurons had no impact on the nocturnal prolactin surge, while a somewhat larger ablation significantly reduced the size of the estradiol-induced surge. We conclude that dynorphin is likely a controlling factor for the nocturnal surge induced by cervical stimulation, and that other KNDy neuron products must play a role in the estradiol-induced surge.


Asunto(s)
Dinorfinas/metabolismo , Estradiol/farmacología , Ciclo Estral/efectos de los fármacos , Prolactina/sangre , Animales , Ciclo Estral/sangre , Femenino , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovariectomía , Ratas , Ratas Sprague-Dawley , Receptores Opioides kappa/antagonistas & inhibidores
2.
Endocrinology ; 156(2): 600-12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25406939

RESUMEN

The peptide oxytocin (OT) is secreted by hypothalamic neurons and exerts numerous actions related to reproduction. OT stimulation of prolactin secretion in female rats is important during the estrous cycle, pregnancy, and lactation. Here we report that OT also stimulates transients of intracellular Ca(2+) concentration in somatotrophs and gonadotrophs as well as the release of GH and LH in a dose-dependent manner with EC50 values that closely correspond to the ligand affinity of the OT receptor (OTR). Remarkably, the hormone-releasing effect of OT in these two cell types is 2 orders of magnitude more sensitive than that in lactotrophs. The specific OTR agonist [Thr(4),Gly(7)]-oxytocin acutely stimulated the release of LH, GH, and prolactin from female rat pituitary cells in primary culture and increased intracellular Ca(2+) concentration in gonadotrophs, somatotrophs, and lactotrophs. In these three cell types, the effects on hormone release and intracellular Ca(2+) of both OT and [Thr(4),Gly(7)]oxytocin were abolished by the specific OT receptor antagonist desGly-NH2-d(CH2)5[D-Tyr(2),Thr(4)]OVT but not by the highly selective vasopressin V1a receptor antagonist, d(CH2)5[Tyr(Me)(2),Dab(5)]AVP. Furthermore, 10 nM arginine vasopressin stimulated LH and GH release comparably with a dose of OT that was at least 10 times lower. Finally, the presence of the OTR-like immunoreactivity could be observed in all three cell types. Taken together, these results show that OT directly stimulates gonadotrophs, somatotrophs, and lactotrophs through OT receptors and suggest that OT signaling may serve to coordinate the release of different pituitary hormones during specific physiological conditions.


Asunto(s)
Oxitocina/fisiología , Adenohipófisis/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Femenino , Adenohipófisis/citología , Ratas Sprague-Dawley , Receptores de Oxitocina/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 301(3): R676-81, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21677274

RESUMEN

We have shown previously that an intravenous injection of oxytocin (OT) in ovariectomized (OVX) rats initiates a circadian rhythm of prolactin (PRL) secretion similar to that observed after cervical stimulation (CS). In this study, we investigated the pathway through which OT triggers the PRL rhythm. We first tested whether an intracerebroventricular injection of OT could trigger the PRL secretory rhythm. As it did not, we injected OT intravenously while an OT receptor antagonist was infused intravenously. This antagonist completely abolished the PRL surges, suggesting that a peripheral target of OT is necessary for triggering the PRL rhythm. We hypothesized that OT may induce PRL release, which would be transported into the brain and trigger the rhythm. In agreement with this, OT injection increased circulating PRL by 5 min. To test whether this acute increase in PRL release would induce the PRL rhythm, we compared the effect of intravenously administered thyrotropin-releasing hormone (TRH) and OT. Although TRH injection also increased PRL to a comparable level after 5 min, only OT-injected animals expressed the PRL secretory rhythm. Motivated by prior findings that bilateral resection of the pelvic nerve blocks CS-induced pseudopregnancy and OT-induced facilitation of lordosis, we then hypothesized that the OT signal may be transmitted through the pelvic nerve. In fact, OT injection failed to induce a PRL secretory rhythm in pelvic-neurectomized animals, suggesting that the integrity of the pelvic nerve is necessary for the systemic OT induction of the PRL secretory rhythm in OVX rats.


Asunto(s)
Ritmo Circadiano , Plexo Hipogástrico/efectos de los fármacos , Ovariectomía , Oxitocina/administración & dosificación , Adenohipófisis/efectos de los fármacos , Prolactina/metabolismo , Análisis de Varianza , Animales , Desnervación , Femenino , Plexo Hipogástrico/cirugía , Infusiones Intravenosas , Inyecciones Intraventriculares , Adenohipófisis/inervación , Adenohipófisis/metabolismo , Ratas , Ratas Sprague-Dawley , Hormona Liberadora de Tirotropina/administración & dosificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA