Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Ethnopharmacol ; 281: 114512, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34384848

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cancer is an inflammatory disease because carcinogenesis and tumor progression depend on intrinsic and extrinsic inflammatory pathways. Although species of the genus Aspidosperma are widely used to treat tumors, and there is ethnopharmacological evidence for traditional use of the species A. subincanum as an anti-inflammatory agent, its antineoplastic potential is unknown. AIM OF THE STUDY: To evaluate toxic effects of the indole alkaloid-rich fraction (IAF) of A. subincanum on the MCF7 cell line and identify some of the anti-inflammatory mechanisms involved. MATERIALS AND METHODS: Chromatographic analyses were performed by ultra-high-performance liquid chromatography with electrospray ionization mass spectrometry, and cytotoxic and antiproliferative effects of IAF were verified by MTT and clonogenic assays. Cell cycle alterations were analyzed by measuring DNA content, while propidium iodide and acridine orange staining was performed to determine the type of induced cell death. The expression of apoptosis markers and proteins involved in cell proliferation and survival pathways was analyzed by immunoblotting, RT-qPCR, and ELISAs. Interference with redox status was investigated using a DCFH-DA probe and by measuring catalase activity. RESULTS: Chromatographic analyses showed that IAF is a complex mixture containing indole alkaloids. IAF selectively exerted toxic and antiproliferative effects, elevating the Bax/Bcl-xL ratio and inducing apoptosis in MCF7 cells. IAF decreased intracellular reactive oxygen species levels and increased catalase activity, while reducing the IL-8 level and suppressing COX-2 expression. CONCLUSIONS: IAF induces apoptosis in MCF7 cells by suppressing COX-2 expression while reducing IL-8 levels and intracellular content of reactive oxygen species.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Aspidosperma , Alcaloides Indólicos/farmacología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Ciclooxigenasa 2/genética , Humanos , Interleucina-8/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
3.
Microbiome ; 9(1): 134, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112246

RESUMEN

The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Femenino , Inflamación , Ratones , Ratones Endogámicos C57BL , Sistema Respiratorio
4.
Clin Sci (Lond) ; 133(22): 2345-2360, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31722009

RESUMEN

There is no consensus on the effects of omega-3 (ω-3) fatty acids (FA) on cutaneous repair. To solve this problem, we used 2 different approaches: (1) FAT-1 transgenic mice, capable of producing endogenous ω-3 FA; (2) wild-type (WT) mice orally supplemented with DHA-enriched fish oil. FAT-1 mice had higher systemic (serum) and local (skin tissue) ω-3 FA levels, mainly docosahexaenoic acid (DHA), in comparison with WT mice. FAT-1 mice had increased myeloperoxidase (MPO) activity and content of CXCL-1 and CXCL-2, and reduced IL-10 in the skin wound tissue three days after the wound induction. Inflammation was maintained by an elevated TNF-α concentration and presence of inflammatory cells and edema. Neutrophils and macrophages, isolated from FAT-1 mice, also produced increased TNF-α and reduced IL-10 levels. In these mice, the wound closure was delayed, with a wound area 6-fold bigger in relation with WT group, on the last day of analysis (14 days post-wounding). This was associated with poor orientation of collagen fibers and structural aspects in repaired tissue. Similarly, DHA group had a delay during late inflammatory phase. This group had increased TNF-α content and CD45+F4/80+ cells at the third day after skin wounding and increased concentrations of important metabolites derived from ω-3, like 18-HEPE, and reduced concentrations of those from ω-6 FA. In conclusion, elevated DHA content, achieved in both FAT-1 and DHA groups, slowed inflammation resolution and impaired the quality of healed skin tissue.


Asunto(s)
Ácidos Docosahexaenoicos/fisiología , Cicatrización de Heridas , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Suplementos Dietéticos , Ácido Graso Desaturasas/genética , Inflamación , Macrófagos/fisiología , Masculino , Ratones Transgénicos , Neutrófilos/fisiología , Piel/metabolismo
5.
Lipids Health Dis ; 17(1): 55, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29554895

RESUMEN

BACKGROUND: We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. METHODS: For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 µM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. RESULTS: Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. CONCLUSIONS: Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , Triglicéridos/metabolismo
6.
J Nutr Biochem ; 55: 76-88, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29413492

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to improve insulin sensitivity and glucose homeostasis in animal models of insulin resistance, but the involved mechanisms still remain unresolved. In this study, we evaluated the effects of fish oil (FO), a source of n-3 PUFAs, on obesity, insulin resistance and muscle mitochondrial function in mice fed a high-fat diet (HFD). C57Bl/6 male mice, 8 weeks old, were divided into four groups: control diet (C), high-fat diet (H), C+FO (CFO) and H+FO (HFO). FO was administered by oral gavage (2 g/kg b.w.), three times a week, starting 4 weeks before diet administration until the end of the experimental protocol. HFD-induced obesity and insulin resistance associated with impaired skeletal muscle mitochondrial function, as indicated by decreased oxygen consumption, tricarboxylic acid cycle intermediate (TCAi) contents (citrate, α-ketoglutarate, malate and oxaloacetate), oxidative phosphorylation protein content and mitochondrial biogenesis. These effects were associated with elevated reactive oxygen species production, decreased PGC1-a transcription and reduced Akt phosphorylation. The changes induced by the HFD were partially attenuated by FO, which decreased obesity and insulin resistance and increased mitochondrial function. In the H group, FO supplementation also improved oxygen consumption; increased TCAi content, and Akt and AMPK phosphorylation; and up-regulated mRNA expression of Gpat1, Pepck, catalase and mitochondrial proteins (Pgc1α, Pparα, Cpt1 and Ucp3). These results suggest that dietary FO attenuates the deleterious effects of the HFD (obesity and insulin resistance) by improving skeletal muscle mitochondrial function.


Asunto(s)
Aceites de Pescado/farmacología , Resistencia a la Insulina , Mitocondrias Musculares/fisiología , Obesidad/dietoterapia , Adiposidad/efectos de los fármacos , Animales , Fármacos Antiobesidad/farmacología , Catalasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/farmacología , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Obesidad/etiología , Proteínas/genética , Proteínas/metabolismo
7.
Front Microbiol ; 8: 1732, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959241

RESUMEN

Asthma is a chronic inflammatory disease that affects more females than males after puberty, and its symptoms and severity in women change during menstruation and menopause. Recently, evidence has demonstrated that interactions among the microbiota, female sex hormones, and immunity are associated with the development of autoimmune diseases. However, no studies have investigated if therapeutic gut microbiota modulation strategies could affect asthma exacerbation during menstruation and menopause. Here we aimed to examine the preventive effects of a probiotic, Bifidobacterium longum 51A, on airway inflammation exacerbation in allergic ovariectomized mice. We first evaluated the gut microbiota composition and diversity in mice 10 days after ovariectomy. Next, we examined whether re-exposure of ovariectomized allergic mice to antigen (ovalbumin) would lead to exacerbation of lung inflammation. Finally, we evaluated the preventive and treatment effect of B. longum 51A on lung inflammation and airway hyperresponsiveness. Our results showed that whereas ovariectomy caused no alterations in the gut microbiota composition and diversity in this animal model, 10 days after ovariectomy, preventive use administration of B. longum 51A, rather than its use after surgery was capable of attenuate the exacerbated lung inflammation and hyperresponsiveness in ovariectomized allergic mice. This prophylactic effect of B. longum 51A involves acetate production, which led to increased fecal acetate levels and, consequently, increased Treg cells in ovariectomized allergic mice.

8.
Rev. bras. farmacogn ; 27(2): 206-213, Mar.-Apr. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-843800

RESUMEN

ABSTRACT Euphorbia umbellata (Pax) Bruyns, Euphorbiaceae, is commonly used in folk medicine of southern Brazil to treat several kinds of cancer. The latex (part of the plant used for this purpose) is mixed with water and taken as treatment; but this matrix contains toxic potential related to the presence of some phorbol type diterpenes. So the aim of this study was to evaluate the cytotoxicity of the crude extract of the bark of E. umbellata and its fractions (Hex, CHCl3, EtOAc and MeOH) using in vitro assay (applying Jurkat cells line). A preliminary cytotoxic study (MTT reduction, trypan blue exclusion and DNA quantification assays) was executed to identify the most active material. The CHCl3 fraction displayed the highest activity and was selected for further investigation of any cytotoxic mechanism and evaluation of chemical composition; flow cytometry, Acridine orange and Hoechst 33342 staining experiments and Gas chromatography–mass spectrometry analysis were applied to achieve these results. This fraction demonstrated the best cytotoxic results against Jurkat cells line with IC50 of 29.00 ± 1.49, 10.06 ± 1.48 and 4.83 ± 2.25 µg/ml for 24, 48 and 72 h of experiment, respectively (trypan blue exclusion). The mechanism responsible for this action can be associated with the promotion of cell cycle arrest and apoptosis. The two main classes of compounds present in the CHCl3 fraction are steroids and triterpenes. Further, phytochemical studies with this fraction need to be evaluated, to try isolating these substances and establishing a more detailed cytotoxic study against Jurkat cells.

9.
J Physiol ; 594(21): 6301-6317, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558442

RESUMEN

KEY POINTS: Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has beneficial effects on changes induced by obesity and partially prevents associated comorbidities. The effects of FO on adipocytes from different adipose tissue depots in high-fat (HF) diet induced obese mice have not been uninvestigated. This is the first study to examine the effects of FO on changes in metabolism and adipokine production in adipocytes from s.c. (inguinal; ING) or visceral (retroperitoneal; RP) white adipose depots in a HF diet-induced obese mice. Unlike most studies performed previously, FO supplementation was initiated 4 weeks before the induction of obesity. HF diet caused marked changes in ING (glucose uptake and secretion of adiponectin, tumour necrosis factor-α and interleukin-6 in ING) and RP (lipolysis, de novo lipogenesis and secretion of pro-inflammatory cytokines) adipose depots. Previous and concomitant FO administration prevented the changes in ING and RP adipocytes induced by the HF diet. ABSTRACT: In the present study, we investigated the effect of fish oil (FO) on metabolism and adipokine production by adipocytes from s.c. (inguinal; ING) and visceral (retroperitoneal; RP) white adipose depots in high-fat (HF) diet-induced obese mice. Mice were divided into CO (control diet), CO+FO, HF and HF+FO groups. The HF group presented higher body weight, glucose intolerance, insulin resistance, higher plasma total and low-density lipoprotein cholesterol levels, and greater weights of ING and RP adipose depots accompanied by hypertrophy of the adipocytes. FO exerted anti-obesogenic effects associated with beneficial effects on dyslipidaemia and insulin resistance in mice fed a HF diet (HF+FO group). HF raised RP adipocyte lipolysis and the production of pro-inflammatory cytokines and reduced de novo synthesis of fatty acids, whereas, in ING adipocytes, it decreased glucose uptake and adiponectin secretion but did not change lipolysis. Therefore, the adipose depots play different roles in HF diet-induced insulin resistance according to their location in the body. Concerning cytokine secretion, adipocytes per se in addition to white adopise tissue infiltrated leukocytes have to be considered in the aetiology of the comorbidities associated with obesity. Evidence is presented showing that previous and concomitant administration of FO can prevent changes in metabolism and the secretion of hormones and cytokines in ING and RP adipocytes induced by HF.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipoquinas/metabolismo , Aceites de Pescado/farmacología , Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Adipocitos/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Aceites de Pescado/uso terapéutico , Interleucina-6/metabolismo , Grasa Intraabdominal/citología , Grasa Intraabdominal/efectos de los fármacos , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
10.
Mediators Inflamm ; 2014: 870634, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25332517

RESUMEN

Excess of saturated fatty acids in the diet has been associated with obesity, leading to systemic disruption of insulin signaling, glucose intolerance, and inflammation. Macadamia oil administration has been shown to improve lipid profile in humans. We evaluated the effect of macadamia oil supplementation on insulin sensitivity, inflammation, lipid profile, and adipocyte size in high-fat diet (HF) induced obesity in mice. C57BL/6 male mice (8 weeks) were divided into four groups: (a) control diet (CD), (b) HF, (c) CD supplemented with macadamia oil by gavage at 2 g/Kg of body weight, three times per week, for 12 weeks (CD + MO), and (d) HF diet supplemented with macadamia oil (HF + MO). CD and HF mice were supplemented with water. HF mice showed hypercholesterolemia and decreased insulin sensitivity as also previously shown. HF induced inflammation in adipose tissue and peritoneal macrophages, as well as adipocyte hypertrophy. Macadamia oil supplementation attenuated hypertrophy of adipocytes and inflammation in the adipose tissue and macrophages.


Asunto(s)
Inflamación/dietoterapia , Macadamia , Obesidad/dietoterapia , Aceites de Plantas/administración & dosificación , Adipocitos/patología , Animales , Aumento de la Célula , Colesterol/sangre , Citocinas/biosíntesis , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Inflamación/patología , Resistencia a la Insulina , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Obesidad/patología
11.
J Nutrigenet Nutrigenomics ; 7(4-6): 314-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26022801

RESUMEN

BACKGROUND/AIMS: To investigate the global changes in DNA methylation and methylation of the promoter region of the peroxisome proliferator-activated receptor gamma transcript variant 2 (Pparg2) gene resulting from a high-fat diet (HFD) and/or fish oil supplementation. METHODS: Fish oil, rich in omega-3 polyunsaturated fatty acids, or water was orally administered to male mice for 12 weeks. After the first 4 weeks, the animals were fed a control diet or an HFD until the end of the experimental protocol, when the epididymal fat, gastrocnemius muscle and liver were excised. RESULTS: Pparg2 mRNA expression was upregulated by obesity and downregulated by fish oil supplementation in the liver. In the gastrocnemius muscle, diet-induced obesity increased global DNA methylation. Fish oil prevented the decrease in Pparg2 promoter methylation induced by obesity in the gastrocnemius muscle. Regardless of the diet given, fish oil supplementation increased Pparg2 promoter methylation at CpG-263 in muscle and adipose tissue. CONCLUSION: HFD and fish oil modified global and Pparg2 promoter DNA methylation in a tissue-specific manner. Fish oil supplementation attenuated body weight gain, abolished the increase in Pparg2 expression in the liver and prevented the decrease in Pparg2 promoter methylation in the muscle induced by the HFD.


Asunto(s)
Metilación de ADN , Dieta Alta en Grasa/efectos adversos , Aceites de Pescado/administración & dosificación , Músculo Esquelético/metabolismo , Tejido Adiposo/metabolismo , Animales , Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nutrigenómica , Obesidad/dietoterapia , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , Regiones Promotoras Genéticas , Distribución Tisular
12.
Nutrition ; 29(2): 443-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23085013

RESUMEN

OBJECTIVE: The present study was designed to investigate the effect of a high-fat diet (HFD) on the inflammatory response of peritoneal macrophages. METHODS: Male Wistar rats were fed a control diet (n = 12) or an HFD (n = 12) for 12 wk. After euthanasia, peritoneal macrophages were collected and stimulated (or not) with lipopolysaccharide (LPS). Results from the assays using peritoneal macrophages were analyzed with one-way analysis of variance or an equivalent non-parametric test. The level of significance adopted was 0.05. RESULTS: Consumption of the HFD was associated with significant increases in weight gain and fat depots (P < 0.05). Despite having no influence in systemic markers of inflammation, such as interleukin (IL)-6, tumor necrosis factor-α, and plasminogen activator inhibitor-1, the HFD intake significantly decreased insulin sensitivity, as evaluated by the homeostasis model assessment index (P < 0.05). A decreased production of IL-1ß, IL-6, IL-10, and nitric oxide in response to the LPS stimulation was observed in peritoneal macrophages from the HFD group (P < 0.05). Also, in HFD-fed animals, LPS incubation did not increase IL-1ß and IL-6 mRNA expression (P < 0.05). These effects were associated with an attenuation of IκB inhibitor kinase-ß phosphorylation and nuclear factor-κB activation in response to LPS and with a failure to decrease IκB inhibitor-α expression (P < 0.05). CONCLUSION: Chronic consumption of an HFD decreased the LPS-induced inflammatory response of peritoneal macrophages, which was associated with a downregulation of the nuclear factor-κB signaling pathway.


Asunto(s)
Dieta Alta en Grasa , Macrófagos Peritoneales/metabolismo , FN-kappa B/genética , Transducción de Señal , Animales , Biomarcadores/sangre , Células Cultivadas , Regulación hacia Abajo , Inflamación/metabolismo , Resistencia a la Insulina , Interleucina-10/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Lipopolisacáridos/metabolismo , Masculino , FN-kappa B/metabolismo , Óxido Nítrico/sangre , Fosforilación , Inhibidor 1 de Activador Plasminogénico/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/sangre , Aumento de Peso
13.
Am J Physiol Endocrinol Metab ; 303(2): E272-82, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22621868

RESUMEN

The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNFα and IL-1ß by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNFα production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Obesidad/prevención & control , Triglicéridos/uso terapéutico , Adiponectina/biosíntesis , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/efectos de los fármacos , Quimiocina CCL2/biosíntesis , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Interleucina-1beta/biosíntesis , Lípidos/sangre , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/etiología , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA