Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650378

RESUMEN

The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.


Asunto(s)
Caenorhabditis elegans , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Animales , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Cromátides , Proteínas Cromosómicas no Histona/genética , Cohesinas
2.
Curr Biol ; 32(21): 4719-4726.e4, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36137547

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Roturas del ADN de Doble Cadena , Animales , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Reparación del ADN , Meiosis , ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
3.
PLoS Genet ; 18(4): e1010152, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35421092

RESUMEN

The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate 'trap' enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Axones/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ligasas/metabolismo , Mamíferos/metabolismo , Neuronas Motoras/metabolismo , Proteómica , Ubiquitinas/metabolismo
4.
J Physiol ; 600(2): 261-276, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33942912

RESUMEN

Non-conventional N-methyl-d-aspartate receptors (NMDARs) containing GluN3A subunits have unique biophysical, signalling and localization properties within the NMDAR family, and are typically thought to counterbalance functions of classical NMDARs made up of GluN1/2 subunits. Beyond their recognized roles in synapse refinement during postnatal development, recent evidence is building a wider perspective for GluN3A functions. Here we draw particular attention to the latest developments for this multifaceted and unusual subunit: from finely timed expression patterns that correlate with plasticity windows in developing brains or functional hierarchies in the mature brain to new insight onto presynaptic GluN3A-NMDARs, excitatory glycine receptors and behavioural impacts, alongside further connections to a range of brain disorders.


Asunto(s)
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Sinapsis/metabolismo
5.
Curr Opin Neurobiol ; 69: 139-148, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33940492

RESUMEN

The study of autophagy in the nervous system has predominantly centered on degeneration. Evidence is now cementing crucial roles for autophagy in neuronal development and growth, especially in axonal and presynaptic compartments. A picture is emerging that autophagy typically promotes the growth of axons and reduces presynaptic stability. Nonetheless, these are not rigid principles, and it remains unclear why autophagy does not always display these relationships during axonal and presynaptic development. Recent progress has identified mechanisms underlying spatiotemporal control of autophagy in neurons and begun to unravel how autophagy is integrated with other cellular processes, such as proteasomal degradation and axon guidance. Ultimately, understanding how autophagy is regulated and its role in the developing nervous system is key to comprehending how the nervous system assembles its stereotyped yet plastic configuration. It is also likely to inform how we think about neurodevelopmental disorders and neurodegenerative diseases.


Asunto(s)
Axones , Enfermedades Neurodegenerativas , Autofagia , Humanos , Neuronas
6.
Nat Commun ; 10(1): 5017, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676756

RESUMEN

Autophagy is an intracellular catabolic process prominent in starvation, aging and disease. Neuronal autophagy is particularly important, as it affects the development and function of the nervous system, and is heavily implicated in neurodegenerative disease. Nonetheless, how autophagy is regulated in neurons remains poorly understood. Using an unbiased proteomics approach, we demonstrate that the primary initiator of autophagy, the UNC-51/ULK kinase, is negatively regulated by the ubiquitin ligase RPM-1. RPM-1 ubiquitin ligase activity restricts UNC-51 and autophagosome formation within specific axonal compartments, and exerts effects broadly across the nervous system. By restraining UNC-51 activity, RPM-1 inhibits autophagosome formation to affect axon termination, synapse maintenance and behavioral habituation. These results demonstrate how UNC-51 and autophagy are regulated subcellularly in axons, and unveils a mechanism for restricting initiation of autophagy across the nervous system. Our findings have important implications beyond nervous system development, given growing links between altered autophagy regulation and neurodegenerative diseases.


Asunto(s)
Autofagia/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Axones/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Enfermedades Neurodegenerativas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Sinapsis/genética , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/genética
7.
J Biol Chem ; 293(36): 13897-13909, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29997255

RESUMEN

PHR (PAM/Highwire/RPM-1) proteins are conserved RING E3 ubiquitin ligases that function in developmental processes, such as axon termination and synapse formation, as well as axon degeneration. At present, our understanding of how PHR proteins form ubiquitin ligase complexes remains incomplete. Although genetic studies indicate NMNAT2 is an important mediator of PHR protein function in axon degeneration, it remains unknown how PHR proteins inhibit NMNAT2. Here, we decipher the biochemical basis for how the human PHR protein PAM, also called MYCBP2, forms a noncanonical Skp/Cullin/F-box (SCF) complex that contains the F-box protein FBXO45 and SKP1 but lacks CUL1. We show FBXO45 does not simply function in substrate recognition but is important for assembly of the PAM/FBXO45/SKP1 complex. Interestingly, we demonstrate a novel role for SKP1 as an auxiliary component of the target recognition module that enhances binding of FBXO45 to NMNAT2. Finally, we provide biochemical evidence that PAM polyubiquitinates NMNAT2 and regulates NMNAT2 protein stability and degradation by the proteasome.


Asunto(s)
Amidina-Liasas/química , Oxigenasas de Función Mixta/química , Nicotinamida-Nucleótido Adenililtransferasa/química , Proteínas Ligasas SKP Cullina F-box/química , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales , Animales , Caenorhabditis elegans , Proteínas F-Box/metabolismo , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/fisiología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S , Proteínas Ligasas SKP Cullina F-box/fisiología , Ubiquitina-Proteína Ligasas
8.
PLoS Genet ; 13(12): e1007095, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29228003

RESUMEN

The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Neurogénesis , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Sinapsis/enzimología , Ubiquitina-Proteína Ligasas/metabolismo
9.
Elife ; 5: e12039, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26920220

RESUMEN

Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Intercambio Genético , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistema de Señalización de MAP Quinasas , Meiosis , Procesamiento Proteico-Postraduccional , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans , Línea Celular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo
10.
Elife ; 5: e10851, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26841696

RESUMEN

Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Estructuras Cromosómicas , Meiosis , Animales , Caenorhabditis elegans , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cohesinas
11.
PLoS Genet ; 10(10): e1004638, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340746

RESUMEN

Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4's high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics.


Asunto(s)
Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Fosfoproteínas Fosfatasas/genética , Animales , Caenorhabditis elegans , Intercambio Genético , Roturas del ADN de Doble Cadena , Recombinación Homóloga/genética , Meiosis/genética , Complejo Sinaptonémico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA