Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(19): 11501-11506, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33960330

RESUMEN

Recently cycloarene has been experimentally obtained in a self-assembled structure, forming graphene-like monoatomic layered systems. Here, we established bandgap engineering/prediction in cycloarene assemblies within a combination of density functional theory and tight-binding Hamiltonians. Our results show that the inter-molecule bond density rules the bandgap. The increase in such bond density increases the valence/conduction bandwidth decreasing the energy gap linearly. We derived an effective model that allows the interpretation of the arising energy gap for general particle-hole symmetric molecular arrangements based on inter-molecular bond strength.

2.
Nanoscale ; 13(10): 5270-5274, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33662069

RESUMEN

A material's geometric structure is a fundamental part of its properties. The honeycomb geometry of graphene is responsible for its Dirac cone, while kagome and Lieb lattices host flat bands and pseudospin-1 Dirac dispersion. These features seem to be particular to a few 2D systems rather than a common occurrence. Given this correlation between structure and properties, exploring new geometries can lead to unexplored states and phenomena. Kepler is the pioneer of the mathematical tiling theory, describing ways of filling the Euclidean plane with geometric forms in his book Harmonices Mundi. In this article, we characterize 1255 lattices composed of k-uniform tiling of the Euclidean plane and unveil their intrinsic properties; this class of arranged tiles presents high-degeneracy points, exotic quasiparticles and flat bands as common features. Here, we present a guide for the experimental interpretation and prediction of new 2D systems.

3.
Phys Chem Chem Phys ; 22(37): 21504-21511, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32955064

RESUMEN

It has recently been demonstrated that N-heterocyclic carbenes (NHCs) form self-assembled monolayers (SAMs) on metal surfaces. Consequently, it is important to both characterize and understand their binding modes to fully exploit NHCs in functional surface systems. To assist with this effort, we have performed first-principles total energy calculations for NHCs on Au(111) and simulations of X-ray absorption near edge structure (XANES). The NHCs we have considered are N,N-dimethyl-, N,N-diethyl-, N,N-diisopropylbenzimidazolylidene (BNHCX, with X = Me, Et, and iPr, respectively) and the bis-BNHCX-Au complexes derived from these molecules. We present a comprehensive analysis of the energetic stability of both the BNHCX and the complexes on Au(111) and, for the former, examine the role of the wing group in determining the attachment geometry. Further structural characterization is performed by calculating the nitrogen K-edge X-ray absorption spectra. Our simulated XANES results give insight into (i) the relationship between the BNHCX/Au geometry and the N(1s) → π*/σ*, pre-edge/near-edge, absorption intensities, and (ii) the contributions of the molecular deformation and molecule-surface electronic interaction to the XANES spectrum. These simulated spectra work not only as a map to the BNHCX conformation, but also, combined with electronic structure calculations, provide a clear understanding of recent experimental XANES findings on BNHCX/Au.

4.
Phys Chem Chem Phys ; 21(40): 22344-22350, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31576867

RESUMEN

Materials with properties designed on-demand arise in a synergy between theoretical and experimental approaches. Here, we explore a set of Archimedean lattices, providing a guide to their electronic properties and topological phases. Within these lattices, a rich electronic structure emerges forming type-I and II Dirac fermions, topological flat bands and high-degeneracy points with linear and flat dispersions. Employing a tight-binding model with spin-orbit coupling, we characterize quantum spin Hall (QSH) phases in all Archimedean lattices. Our discussions are validated within density functional theory calculations, where we show the characteristic bands of the studied lattices arising in 2D carbon allotropes.

5.
Nano Lett ; 19(9): 6564-6568, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424949

RESUMEN

Recently, orbital-textures have been found in Rashba and topological insulator (TI) surface states as a result of the spin-orbit coupling (SOC). Here, we predict a px/py orbital texture, in linear dispersive Dirac bands, arising at the K/K' points of χ-h0 borophene chiral monolayer. Combining "first-principles" calculations with effective Hamiltonians, we show that the orbital pseudospin has its direction locked with the momentum in a similar way as TIs' spin-textures. Additionally, considering a layer pseudospin degree of freedom, this lattice allows stackings of layers with equivalent or opposite chiralities. In turn, we show a control of the orbital textures and layer localization through the designed stacking and external electric field. For instance, for the opposite chirality stacking, the electric field allows for an on/off switch of the orbital-textured Dirac cone.

6.
J Chem Phys ; 150(23): 234701, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31228898

RESUMEN

We investigate the layer localization control of two-dimensional states in multilayer metal-organic frameworks (MOFs). For finite stackings of (NiC4S4)3 MOFs, the weak van der Waals coupling between adjacent layers leads to a Fermi level dependent distribution of the electronic states in the monolayers. Such distribution is reflected in the topological edge states of multilayer nanoribbons. Moreover, by applying an external electric field parallel to the stacking direction, the spatial localization of the electronic states can be controlled for a chosen Fermi energy. This localization behavior is studied comparing density functional theory calculations with a kagome lattice tight-binding model. Furthermore, for infinite stacked nanoribbons, a new V-gutter Dirac state is found in the side surfaces, which allows anisotropic current control by tuning the Fermi energy. Our results can be immediately extended to other kagome MOFs with eclipsed stackings, introducing a new degree of freedom (layer localization) to materials design.

7.
Phys Chem Chem Phys ; 20(35): 22652-22659, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30132483

RESUMEN

The realization of the Quantum anomalous Hall effect (QAHE) in two dimensional (2D) metal organic frameworks (MOFs), (MC4S4)3 with M = Mn, Fe, Co, Ru and Rh, has been investigated based on a combination of first-principles calculations and tight binding models. Our analysis of the magnetic anisotropy energy (MAE) reveals that the out-of-plane (in-plane) magnetization is favored for M = Mn, Fe, and Ru (Co, and Rh). Therefore, we predict that the structural symmetry of (MC4S4)3 yields the QAHE only for M = Mn, Fe and Ru. Such a quantum anomalous Hall phase has been confirmed through the calculation of the Chern number, and examining the formation of topologically protected (metallic) edge states. Furthermore, we show that viable electron (n-type) doping of the MOFs can be used to place the Fermi level within the non-trivial energy gap; where we find that in (RuC4S4)3, in addition to the up-shift of the Fermi level, the MAE energy increases by 40%. Finally, we show that in MOF/graphene (vdW) interfaces, the Fermi level tuning can be done with an external electric field, which controls the charge transfer at the MOF/graphene interface, giving rise to switchable topologically protected edge currents in the MOFs.

8.
J Chem Phys ; 147(17): 174704, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117701

RESUMEN

Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ∼20 and ∼130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA