Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(7): 110294, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39100928

RESUMEN

The blood-nerve-barrier (BNB) that regulates peripheral nerve homeostasis is formed by endoneurial capillaries and perineurial cells surrounding the Schwann cell (SC)-rich endoneurium. Barrier dysfunction is common in human tumorigenesis, including in some nerve tumors. We identify barrier disruption in human NF1 deficient neurofibromas, which were characterized by reduced perineurial cell glucose transporter 1 (GLUT1) expression and increased endoneurial fibrin(ogen) deposition. Conditional Nf1 loss in murine SCs recapitulated these alterations and revealed decreased tight junctions and decreased caveolin-1 (Cav1) expression in mutant nerves and in tumors, implicating reduced Cav1-mediated transcytosis in barrier disruption and tumorigenesis. Additionally, elevated receptor tyrosine kinase activity and genetic deletion of Cav1 increased endoneurial fibrin(ogen), and promoted SC tumor formation. Finally, when SC lacked Nf1, genetic loss or pharmacological inhibition of P2RY14 rescued Cav1 expression and barrier function. Thus, loss of Nf1 in SC causes dysfunction of the BNB via P2RY14-mediated G-protein coupled receptor (GPCR) signaling.

2.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258905

RESUMEN

Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.


Asunto(s)
Hipersensibilidad , Neuralgia , Neurofibromatosis 1 , Animales , Ratones , Neurofibromatosis 1/genética , Nocicepción , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Células de Schwann
3.
Elife ; 112022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35311647

RESUMEN

Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.


Asunto(s)
AMP Cíclico/metabolismo , Neurofibroma , Neurofibromatosis 1 , Receptores Purinérgicos P2Y/metabolismo , Animales , Autorrenovación de las Células , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Ratones , Neurofibroma/genética , Neurofibroma/metabolismo , Neurofibroma/patología , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Células de Schwann/metabolismo
4.
Glia ; 69(8): 1837-1851, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33507559

RESUMEN

To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2-driven ß-arrestin-mediated AKT signaling is aberrant. SC-released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium-independent and calcium-dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Células de Schwann , Animales , Ratones , Neuroglía/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Receptores Purinérgicos/metabolismo , Células de Schwann/metabolismo , Transducción de Señal/fisiología
5.
Can Commun Dis Rep ; 46(10): 354-361, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33315999

RESUMEN

BACKGROUND: Lyme disease is an emerging vector-borne zoonotic disease of increasing public health importance in Canada. As part of its mandate, the Canadian Lyme Disease Research Network (CLyDRN) launched a pan-Canadian sentinel surveillance initiative, the Canadian Lyme Sentinel Network (CaLSeN), in 2019. OBJECTIVES: To create a standardized, national sentinel surveillance network providing a real-time portrait of the evolving environmental risk of Lyme disease in each province. METHODS: A multicriteria decision analysis (MCDA) approach was used in the selection of sentinel regions. Within each sentinel region, a systematic drag sampling protocol was performed in selected sampling sites. Ticks collected during these active surveillance visits were identified to species, and Ixodes spp. ticks were tested for infection with Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, Babesia microti and Powassan virus. RESULTS: In 2019, a total of 567 Ixodes spp. ticks (I. scapularis [n=550]; I. pacificus [n=10]; and I. angustus [n=7]) were collected in seven provinces: British Columbia, Manitoba, Ontario, Québec, New Brunswick, Nova Scotia and Prince Edward Island. The highest mean tick densities (nymphs/100 m2) were found in sentinel regions of Lunenburg (0.45), Montréal (0.43) and Granby (0.38). Overall, the Borrelia burgdorferi prevalence in ticks was 25.2% (0%-45.0%). One I. angustus nymph from British Columbia was positive for Babesia microti, a first for the province. The deer tick lineage of Powassan virus was detected in one adult I. scapularis in Nova Scotia. CONCLUSION: CaLSeN provides the first coordinated national active surveillance initiative for tick-borne disease in Canada. Through multidisciplinary collaborations between experts in each province, the pilot year was successful in establishing a baseline for Lyme disease risk across the country, allowing future trends to be detected and studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA