Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecancermedicalscience ; 5: 218, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22276060

RESUMEN

The Worldwide innovative Networking in personalized cancer medicine (WIN) initiated by the Institute Gustave Roussy (France) and The University of Texas MD Anderson Cancer Center (USA) has dedicated its 3rd symposium (Paris, 6-8 July 2011) to discussion on gateways to increase the efficacy of cancer diagnostics and therapeutics (http://www.winconsortium.org/symposium.html).Speakers ranged from clinical oncologist to researchers, industrial partners, and tools developers; a famous patient was present: Janelle Hail, a 30-year breast cancer survivor, founder and CEO of the National Breast Cancer Foundation, Inc. (NBCF).The p-medicine consortium found this venue a perfect occasion to present a poster about its activities that are in accordance with the take home message of the symposium.In this communication, we summarize what we presented with particular attention to the interaction between the symposium's topic and content and our project.

2.
Artículo en Inglés | MEDLINE | ID: mdl-11088680

RESUMEN

We derive a mesoscopic modeling and simulation technique that is very close to the technique known as dissipative particle dynamics. The model is derived from molecular dynamics by means of a systematic coarse-graining procedure. This procedure links the forces between the dissipative particles to a hydrodynamic description of the underlying molecular dynamics (MD) particles. In particular, the dissipative particle forces are given directly in terms of the viscosity emergent from MD, while the interparticle energy transfer is similarly given by the heat conductivity derived from MD. In linking the microscopic and mesoscopic descriptions we thus rely on the macroscopic or phenomenological description emergent from MD. Thus the rules governing this form of dissipative particle dynamics reflect the underlying molecular dynamics; in particular, all the underlying conservation laws carry over from the microscopic to the mesoscopic description. We obtain the forces experienced by the dissipative particles together with an approximate form of the associated equilibrium distribution. Whereas previously the dissipative particles were spheres of fixed size and mass, now they are defined as cells on a Voronoi lattice with variable masses and sizes. This Voronoi lattice arises naturally from the coarse-graining procedure, which may be applied iteratively and thus represents a form of renormalization-group mapping. It enables us to select any desired local scale for the mesoscopic description of a given problem. Indeed, the method may be used to deal with situations in which several different length scales are simultaneously present. We compare and contrast this particulate model with existing continuum fluid dynamics techniques, which rely on a purely macroscopic and phenomenological approach. Simulations carried out with the present scheme show good agreement with theoretical predictions for the equilibrium behavior.

3.
Artículo en Inglés | MEDLINE | ID: mdl-11088774

RESUMEN

The behavior of two-dimensional binary and ternary amphiphilic fluids under flow conditions is investigated using a hydrodynamic lattice-gas model. After the validation of the model in simple cases (Poiseuille flow, Darcy's law for single component fluids), attention is focused on the properties of binary immiscible fluids in porous media. An extension of Darcy's law which explicitly admits a viscous coupling between the fluids is verified, and evidence of capillary effects is described. The influence of a third component, namely, surfactant, is studied in the same context. Invasion simulations have also been performed. The effect of the applied force on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition produces new phenomena, including emulsification and micellization. At very low fluid forcing levels, this leads to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long times (beyond the water percolation threshold), the concentration of remaining oil within the porous medium is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of surfactant in the invading phase during drainage simulations slows down the invasion process-the invading fluid takes a more tortuous path to invade the porous medium-and reduces the oil recovery (the residual oil saturation increases).

4.
Artículo en Inglés | MEDLINE | ID: mdl-11046283

RESUMEN

We investigate the domain growth and phase separation of hydrodynamically correct binary immiscible fluids of differing viscosity as a function of minority phase concentration in both two and three spatial dimensions using dissipative particle dynamics. We also examine the behavior of equal-viscosity fluids and compare our results to similar lattice-gas simulations in two dimensions.

5.
Artículo en Inglés | MEDLINE | ID: mdl-11138126

RESUMEN

We develop our recently proposed lattice-Boltzmann method for the nonequilibrium dynamics of amphiphilic fluids [H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, Proc. R. Soc. London, Ser. A 456, 2043 (2000)]. Our method maintains an orientational degree of freedom for the amphiphilic species and models fluid interactions at a microscopic level by introducing self-consistent mean-field forces between the particles into the lattice-Boltzmann dynamics, in a way that is consistent with kinetic theory. We present the results of extensive simulations in two dimensions which demonstrate the ability of our model to capture the correct phenomenology of binary and ternary amphiphilic fluids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA