Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Phys Eng Express ; 10(5)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39094587

RESUMEN

Resorbable inferior vena cava (IVC) filters require embedded contrast for image-guided placement and integrity monitoring. We calculated correction factors to account for partial volume averaging of thin nanoparticle (NP)-embedded materials, accounting for object and slice thicknesses, background signal, and nanoparticle concentration. We used phantoms containing polycaprolactone disks embedded with bismuth (Bi) or ytterbium (Yb): 0.4- to 1.2-mm-thick disks of 20 mg ml-1NPs (thickness phantom), 0.4-mm-thick disks of 0-20 mg ml-1NPs in 2 mg ml-1iodine (concentration phantom), and 20 mg ml-1NPs in 0.4-mm-thick disks in 0-10 mg ml-1iodine (background phantom). Phantoms were scanned on a dual-source CT with 80, 90, 100, and 150 kVp with tin filtration and reconstructed at 1.0- to 1.5-mm slice thickness with a 0.1-mm interval. Following scanning, disks were processed for inductively coupled plasma optical emission spectrometry (ICP-OES) to determine NP concentration. Mean and maximum CT numbers (HU) of all disks were measured over a 0.5-cm2area for each kVp. HU was converted to concentration using previously measured calibrations. Concentration measurements were corrected for partial volume averaging by subtracting residual slice background and extrapolating disk thickness to both nominal and measured slice sensitivity profiles (SSP, mm). Slice thickness to agreement (STTA, mm) was calculated by replacing the CT-derived concentrations with ICP-OES measurements and solving for thickness. Slice thickness correction factors improved agreement with ICP-OES for all measured data. Yb corrections resulted in lower STTA than Bi corrections in the concentration phantom (1.01 versus 1.31 STTA/SSP, where 1.0 is perfect agreement), phantoms with varying thickness (1.30 versus 1.87 STTA/SSP), and similar ratio in phantoms with varying background iodine concentration (1.34 versus 1.35 STTA/SSP). All measured concentrations correlated strongly with ICP-OES and all corrections for partial volume averaging increased agreement with ICP-OES concentration, demonstrating potential for monitoring the integrity of thin IVC resorbable filters with CT.


Asunto(s)
Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Poliésteres/química , Polímeros/química , Medios de Contraste/química , Iterbio/química , Bismuto/química , Humanos , Nanoestructuras/química , Nanopartículas/química , Procesamiento de Imagen Asistido por Computador/métodos
2.
ACS Appl Mater Interfaces ; 16(26): 33159-33168, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912610

RESUMEN

In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation. Through electrospinning, we fabricated multifunctional perivascular polycaprolactone (PCL) wraps loaded with bismuth nanoparticles (BiNPs) for enhanced radiologic visibility and drugs that can attenuate NIH─rosuvastatin (Rosu) and rapamycin (Rapa). The following groups were tested on the AVFs of a total of 24 Sprague-Dawley rats with induced chronic kidney disease: control (i.e., without wrap), PCL-Bi (i.e., wrap with BiNPs), PCL-Bi-Rosu, and PCL-Bi-Rapa. We found that BiNPs significantly improved the wraps' radiopacity without affecting biocompatibility. The drug release profiles of Rosu (hydrophilic drug) and Rapa (hydrophobic drug) differed significantly. Rosu demonstrated a burst release followed by gradual tapering over 8 weeks, while Rapa demonstrated a gradual release similar to that of the hydrophobic BiNPs. In vivo investigations revealed that both drug-loaded wraps can reduce vascular stenosis on ultrasonography and histomorphometry, as well as reduce [18F]Fluorodeoxyglucose uptake on positron emission tomography. Immunohistochemical studies revealed that PCL-Bi-Rosu primarily attenuated endothelial dysfunction and hypoxia in the neointimal layer, while PCL-Bi-Rapa modulated hypoxia, inflammation, and cellular proliferation across the whole outflow vein. In summary, the controlled delivery of drugs with different properties and mechanisms of action against NIH through a multifunctional, radiopaque perivascular wrap can improve imaging and histologic parameters of AVF maturation.


Asunto(s)
Bismuto , Ratas Sprague-Dawley , Rosuvastatina Cálcica , Sirolimus , Animales , Ratas , Sirolimus/química , Sirolimus/farmacología , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/farmacología , Rosuvastatina Cálcica/farmacocinética , Bismuto/química , Bismuto/farmacología , Poliésteres/química , Masculino , Fístula Arteriovenosa/patología , Nanopartículas del Metal/química , Neointima/patología , Nanopartículas/química , Humanos , Liberación de Fármacos
3.
Adv Healthc Mater ; 13(2): e2302029, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37619534

RESUMEN

Deep skin wounds represent a serious condition and frequently require split-thickness skin grafts (STSG) to heal. The application of autologous human-skin-cell-suspension (hSCS) requires less donor skin than STSG without compromising the healing capacity. Impaired function and replicative ability of senescent cutaneous cells in the aging skin affects healing with autologous hSCS. Major determinants of senescence are telomere erosion and DNA damage. Human telomerase reverse transcriptase (hTERT) adds telomeric repeats to the DNA and can protect against DNA damage. Herein, hTERT mRNA lipid nanoparticles (LNP) are proposed and evaluated for enhancing cellular engraftment and proliferation of hSCS. Transfection with optimized hTERT mRNA LNP system enables delivery and expression of mRNA in vitro in keratinocytes, fibroblasts, and in hSCS prepared from donors' skin. Telomerase activity in hSCS is significantly increased. hTERT mRNA LNP enhance the generation of a partial-thickness human skin equivalent in the mouse model, increasing hSCS engraftment (Lamin) and proliferation (Ki67), while reducing cellular senescence (p21) and DNA damage (53BP1).


Asunto(s)
Telomerasa , Animales , Ratones , Humanos , Telomerasa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Senescencia Celular/genética , Cicatrización de Heridas
4.
J Vasc Interv Radiol ; 35(1): 113-121.e3, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37696432

RESUMEN

PURPOSE: To improve radiopacity of radiolucent absorbable poly-p-dioxanone (PPDO) inferior vena cava filters (IVCFs) and demostrate their effectiveness in clot-trapping ability. MATERIALS AND METHODS: Tungsten nanoparticles (WNPs) were incorporated along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of WNPs. The physicochemical and in vitro and in vivo imaging properties of PPDO IVCFs with WNPs with single-polymer PHB (W-P) were compared with those of WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). RESULTS: In vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physicomechanical properties of the PPDO sutures. W-P- and W-PB-coated IVCFs were deployed successfully into the inferior vena cava of pig models with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at Week 3 for both filters. CONCLUSIONS: The results highlight the utility of nanoparticles (NPs) and polymers for enhancing radiopacity of medical devices. Different methods of incorporating NPs and polymers can still be explored to improve the effectiveness, safety, and quality of absorbable IVCFs.


Asunto(s)
Nanopartículas , Filtros de Vena Cava , Porcinos , Animales , Tungsteno , Polímeros , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/cirugía , Remoción de Dispositivos
5.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798362

RESUMEN

The use of absorbable inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) eliminates risks and complications associated with the use of retrievable metallic filters. Radiopacity of radiolucent PPDO IVCFs can be improved with the incorporation of nanoparticles (NPs) made of high-atomic number materials such as gold and bismuth. In this study, we focused on incorporating tungsten NPs (WNPs), along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of the WNPs. We compared the imaging properties of WNPs with single-polymer PHB (W-P) and WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). Our in vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physico-mechanical properties of the PPDO sutures. We observed a more sustained release of WNPs from W-PB-coated sutures than W-P-coated sutures. We successfully deployed W-P- and W-PB-coated IVCFs into the inferior vena cava of pig models, with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at week 3 for both filters. Results of this study highlight the utility of NPs and polymers for enhancing radiopacity of medical devices; however, different methods of incorporating NPs and polymers can still be explored to improve the efficacy, safety, and quality of absorbable IVCFs.

6.
Oncogene ; 38(33): 6095-6108, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31289363

RESUMEN

Current anti-angiogenic therapy for cancer is based mainly on inhibition of the vascular endothelial growth factor pathway. However, due to the transient and only modest benefit from such therapy, additional approaches are needed. Deregulation of microRNAs (miRNAs) has been demonstrated to be involved in tumor angiogenesis and offers opportunities for a new therapeutic approach. However, effective miRNA-delivery systems are needed for such approaches to be successful. In this study, miRNA profiling of patient data sets, along with in vitro and in vivo experiments, revealed that miR-204-5p could promote angiogenesis in ovarian tumors through THBS1. By binding with scavenger receptor class B type 1 (SCARB1), reconstituted high-density lipoprotein-nanoparticles (rHDL-NPs) were effective in delivering miR-204-5p inhibitor (miR-204-5p-inh) to tumor sites to suppress tumor growth. These results offer a new understanding of miR-204-5p in regulating tumor angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , MicroARNs , Neovascularización Patológica/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Inhibidores de la Angiogénesis/farmacología , Animales , Carcinoma Epitelial de Ovario/irrigación sanguínea , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Ratones Desnudos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Terapia Molecular Dirigida/métodos , Neovascularización Patológica/tratamiento farmacológico , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/patología , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Cancer Ther ; 18(2): 421-436, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30420565

RESUMEN

Systematic approaches for accurate repurposing of targeted therapies are needed. We developed and aimed to biologically validate our therapy predicting tool (TPT) for the repurposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETi) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.Utilizing established ovarian cancer preclinical models, we carried out in vitro and in vivo studies with clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.Treatment with BETis or siRNA-mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation, and increased cell apoptosis in vitro. In vivo studies with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. In addition, knockdown of BRD4 with doxycycline-inducible shRNA increased survival up to 50% (P < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1 Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic agent for ovarian cancer by downregulating Notch3 expression.The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers.


Asunto(s)
Acetamidas/administración & dosificación , Azepinas/administración & dosificación , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Receptor Notch3/metabolismo , Factores de Transcripción/metabolismo , Acetamidas/farmacología , Animales , Azepinas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Cancer Ther ; 16(5): 966-976, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28223424

RESUMEN

Hyperthermia has been investigated as a potential treatment for cancer. However, specificity in hyperthermia application remains a significant challenge. Magnetic fluid hyperthermia (MFH) may be an alternative to surpass such a challenge, but implications of MFH at the cellular level are not well understood. Therefore, the present work focused on the examination of gene expression after MFH treatment and using such information to identify target genes that when inhibited could produce an enhanced therapeutic outcome after MFH. Genomic analyzes were performed using ovarian cancer cells exposed to MFH for 30 minutes at 43°C, which revealed that heat shock protein (HSP) genes, including HSPA6, were upregulated. HSPA6 encodes the Hsp70, and its expression was confirmed by PCR in HeyA8 and A2780cp20 ovarian cancer cells. Two strategies were investigated to inhibit Hsp70-related genes, siRNA and Hsp70 protein function inhibition by 2-phenylethyenesulfonamide (PES). Both strategies resulted in decreased cell viability following exposure to MFH. Combination index was calculated for PES treatment reporting a synergistic effect. In vivo efficacy experiments with HSPA6 siRNA and MFH were performed using the A2780cp20 and HeyA8 ovarian cancer mouse models. A significantly reduction in tumor growth rate was observed with combination therapy. PES and MFH efficacy were also evaluated in the HeyA8 intraperitoneal tumor model, and resulted in robust antitumor effects. This work demonstrated that HSP70 inhibition combination with MFH generate a synergistic effect and could be a promising target to enhance MFH therapeutic outcomes in ovarian cancer. Mol Cancer Ther; 16(5); 966-76. ©2017 AACR.


Asunto(s)
Proteínas HSP70 de Choque Térmico/genética , Hipertermia Inducida , Neoplasias Ováricas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Terapia Combinada , Femenino , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Humanos , Fenómenos Magnéticos , Ratones , Neoplasias Ováricas/patología , ARN Interferente Pequeño/genética
9.
Cell Rep ; 17(6): 1621-1631, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806300

RESUMEN

Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. CTGF silencing aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Hipertermia Inducida , Neoplasias Ováricas/metabolismo , Neoplasias Uterinas/metabolismo , Animales , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Genes Relacionados con las Neoplasias , Humanos , Ratones , Modelos Biológicos , Neoplasias Ováricas/genética , Proteómica , Neoplasias Uterinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA