Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35161378

RESUMEN

Vitis vinifera includes a large number of cultivars that are further distinguished in biotypes and clones, and it is actually hard to differentiate them, even through complex molecular techniques. In this work, the plant materials of 56 putative Sangiovese and 14 putative Montepulciano biotypes, two of the most widespread black-berried Italian cultivars, were collected in different wine-growing areas of Italy distributed in 13 regions, from north to south. Firstly, the samples were analyzed using SSR markers to have proper varietal identification. According to the results, the genotypes belonged to three different cultivars: Sangiovese, Sanforte, and Montepulciano. Subsequently, the samples were investigated using AFLP, SAMPL, M-AFLP, and I-SSR molecular markers to estimate their intra-varietal genetic variability. The DNA marker-based method used turned out to be performing to bring out the geographic differences among the biotypes screened, and it can therefore be considered as a powerful tool available for all the grapevine varieties.

2.
Mol Biotechnol ; 56(5): 408-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24347297

RESUMEN

This study uses PCR-derived marker systems to investigate the extent and distribution of genetic variability of 80 Italian Prosecco accessions coming from Prosecco DOC area (north-east area of Italy). The studied samples include genotypes from Veneto and Friuli Venezia Giulia region. In order to verify the varietal identity of the samples, analyses based on 22 SSR loci were performed, and two grape varieties were found: Prosecco tondo and Prosecco lungo. In addition to microsatellite analysis, intra-varietal variability study was performed using AFLP, SAMPL, ISSR, and M-AFLP molecular markers. This molecular approach could discriminate different Prosecco tondo accessions coming from Treviso hills, from Veneto plain, from Friuli Venezia Giulia region, and from Padua hills (Serprina samples). As concerning Prosecco lungo variety, it was possible to discriminate molecularly the accessions from Veneto region and those from Friuli Venezia Giulia region. The molecular analysis allowed a distinction of the Prosecco genotypes on the basis of their geographic origins with plant-specific markers able to differentiate all Prosecco accessions. In this paper, the studied grape variety is termed Prosecco and not Glera (which is the present name) because the sampled vineyards were established many years ago when the name of the variety was Prosecco.


Asunto(s)
Variación Genética/genética , Reacción en Cadena de la Polimerasa/métodos , Vitis/genética , Italia
3.
Mol Biotechnol ; 50(3): 189-99, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21688040

RESUMEN

The DNA molecular analyses together with ampelography, ampelometry, and biochemistry are essential for grapevine identification and investigation of genetic differences among the Vitis vinifera L. cultivars and clones. Ten Malvasia cultivars (i.e., Istrian Malvasia; M. delle Lipari; M. bianca di Candia; M. di Candia Aromatica; M. del Lazio; M. bianca lunga, also known as Malvasia del Chianti; M. nera di Brindisi/Lecce; M. di Casorzo; M. di Schierano, and M. nera di Bolzano) were analyzed using molecular approaches to study the genetic inter-varietal variability. Thirty Istrian Malvasia genotypes (i.e., 8 Italian clones, such as ISV 1, ISV F6, VCR 4, VCR 113, VCR 114, VCR 115, ERSA 120, ERSA 121, and 22 autochthonous grapevine accessions grown in Istrian Peninsula, Croatia) were investigated to evaluate the morphological and genetic intra-varietal variability. DNA analysis allowed discrimination of all Malvasia genotypes at molecular level using AFLP, SAMPL, and M-AFLP markers. Italian clones and autochthonous Croatian accessions of Istrian Malvasia were grouped according to their different geographic origins. These results showed the great genetic variability of Malvasia genotypes suggesting the need for the preservation of autochthonous grapevine biotypes found on different areas to approve the correct choice and selection of the grape multiplication materials.


Asunto(s)
Variación Genética , Vitis/clasificación , Vitis/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , Clonación Molecular , Croacia , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Sitios Genéticos , Genotipo , Repeticiones de Microsatélite , Fenotipo , Análisis de Secuencia de ADN
4.
Mol Biotechnol ; 50(1): 72-85, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21479693

RESUMEN

The genetic grapevine intravarietal variability will be analyzed by PCR-derived marker systems. In particular, the object of the investigation will be the clonal variations of Malvasia nera di Brindisi/Lecce, Negroamaro and Primitivo, also known as Zinfandel, which are three grapevine varieties cultivated in Apulia region (Italy). In order to assess varietal identity of the samples, 132 DNA tests were performed by amplifying 16 SSR loci. The study of the intravarietal variability was performed using AFLPs, SAMPLs, ISSRs, and M-AFLPs. The application of the above-mentioned techniques allowed both to discriminate all genotypes of the three cultivars and to distinguish the accessions of each cultivar sampled from different geographic cultivation areas. Furthermore, the study of biotypes cultivated in different geographical environments of Salento (i.e., Apulia region) allowed important correlations between molecular marker variability and phenotypic traits. These results are suggesting both to focus our attention on the effects of the environment on the genotype and to consider, as a practical consequence, the importance of preserving autochthon grapevine biotypes found in different areas to truly preserve the richness of the germplasm. Thus, more accurate DNA studies give new information that can be extremely useful to the vine nurseries for the correct choice (i.e., supported by more accurate intravarietal variability analysis) of the grape multiplication materials.


Asunto(s)
Marcadores Genéticos/genética , Variación Genética , Reacción en Cadena de la Polimerasa/métodos , Vitis/clasificación , Vitis/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN de Plantas/análisis , ADN de Plantas/genética , Genotipo , Italia , Repeticiones de Microsatélite , Fenotipo , Vitis/crecimiento & desarrollo
5.
Mol Biotechnol ; 48(3): 244-54, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21188550

RESUMEN

This study uses PCR-derived marker systems to investigate the extent and distribution of genetic variability of 53 Garnacha accessions coming from Italy, France and Spain. The samples studied include 28 Italian accessions (named Tocai rosso in Vicenza area; Alicante in Sicily and Elba island; Gamay perugino in Perugia province; Cannonau in Sardinia), 19 Spanish accessions of different types (named Garnacha tinta, Garnacha blanca, Garnacha peluda, Garnacha roja, Garnacha erguida, Garnacha roya) and 6 French accessions (named Grenache and Grenache noir). In order to verify the varietal identity of the samples, analyses based on 14 simple sequence repeat (SSR) loci were performed. The presence of an additional allele at ISV3 locus (151 bp) was found in four Tocai rosso accessions and in a Sardinian Cannonau clone, that are, incidentally, chimeras. In addition to microsatellite analysis, intravarietal variability study was performed using AFLP, SAMPL and M-AFLP molecular markers. AFLPs could discriminate among several Garnacha samples; SAMPLs allowed distinguishing few genotypes on the basis of their geographic origin, whereas M-AFLPs revealed plant-specific markers, differentiating all accessions. Italian samples showed the greatest variability among themselves, especially on the basis of their different provenance, while Spanish samples were the most similar, in spite of their morphological diversity.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , Marcadores Genéticos/genética , Reacción en Cadena de la Polimerasa/métodos , Vitis/genética , Análisis por Conglomerados , ADN de Plantas/análisis , Variación Genética , Italia , Repeticiones de Microsatélite , España , Vitis/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA