RESUMEN
Animals depend on the sequential oxidation of organic molecules to survive; thus, oxygen-carrying/transporting proteins play a fundamental role in aerobic metabolism. Globins are the most common and widespread group of respiratory proteins. They can be divided into three types: circulating intracellular, noncirculating intracellular, and extracellular, all of which have been reported in annelids. The diversity of oxygen transport proteins has been underestimated across metazoans. We probed 250 annelid transcriptomes in search of globin diversity in order to elucidate the evolutionary history of this gene family within this phylum. We report two new globin types in annelids, namely androglobins and cytoglobins. Although cytoglobins and myoglobins from vertebrates and from invertebrates are referred to by the same name, our data show they are not genuine orthologs. Our phylogenetic analyses show that extracellular globins from annelids are more closely related to extracellular globins from other metazoans than to the intracellular globins of annelids. Broadly, our findings indicate that multiple gene duplication and neo-functionalization events shaped the evolutionary history of the globin family.
Asunto(s)
Anélidos/genética , Evolución Molecular , Globinas/genética , Familia de Multigenes , Secuencia de Aminoácidos , Animales , Anélidos/química , Duplicación de Gen , Globinas/química , FilogeniaRESUMEN
There are three broad groups of oxygen-transport proteins found in the haemolymph (blood) of invertebrates, namely the hemocyanins, the hemerythrins and the globins. Both hemerythrins and extracellular globins are iron-based proteins that are understudied when compared to the copper-containing hemocyanins. Recent evidence suggests that hemerythrins and (giant) extracellular globins (and their linker chains) are more widely distributed than previously thought and may have biological functions beyond oxygen transport and storage. Herein, we review contemporary literature of these often-neglected proteins with respect to their structural configurations on formation and ancestral states.
Asunto(s)
Evolución Molecular , Globinas/química , Hemeritrina/química , Hemocianinas/química , Invertebrados/química , AnimalesRESUMEN
Multicellular organisms depend on oxygen-carrying proteins to transport oxygen throughout the body; therefore, proteins such as hemoglobins (Hbs), hemocyanins, and hemerythrins are essential for maintenance of tissues and cellular respiration. Vertebrate Hbs are among the most extensively studied proteins; however, much less is known about invertebrate Hbs. Recent studies of hemocyanins and hemerythrins have demonstrated that they have much wider distributions than previously thought, suggesting that oxygen-binding protein diversity is underestimated across metazoans. Hexagonal bilayer hemoglobin (HBL-Hb), a blood pigment found exclusively in annelids, is a polymer comprised up to 144 extracellular globins and 36 linker chains. To further understand the evolutionary history of this protein complex, we explored the diversity of linkers and extracellular globins from HBL-Hbs using in silico approaches on 319 metazoan and one choanoflagellate transcriptomes. We found 559 extracellular globin and 414 linker genes transcribed in 171 species from ten animal phyla with new records in Echinodermata, Hemichordata, Brachiopoda, Mollusca, Nemertea, Bryozoa, Phoronida, Platyhelminthes, and Priapulida. Contrary to previous suggestions that linkers and extracellular globins emerged in the annelid ancestor, our findings indicate that they have putatively emerged before the protostome-deuterostome split. For the first time, we unveiled the comprehensive evolutionary history of metazoan HBL-Hb components, which consists of multiple episodes of gene gains and losses. Moreover, because our study design surveyed linkers and extracellular globins independently, we were able to cross-validate our results, significantly reducing the rate of false positives. We confirmed that the distribution of HBL-Hb components has until now been underestimated among animals.
Asunto(s)
Globinas/genética , Invertebrados/genética , Filogenia , AnimalesRESUMEN
Studies that measured mutation rates in human populations using pedigrees have reported values that differ significantly from rates estimated from the phylogenetic comparison of humans and chimpanzees. Consequently, exchanges between mutation rate values across different timescales lead to conflicting divergence time estimates. It has been argued that this variation of mutation rate estimates across hominoid evolution is in part caused by incorrect assignment of calibration information to the mean coalescent time among loci, instead of the true genetic isolation (speciation) time between humans and chimpanzees. In this study, we investigated the feasibility of estimating the human pedigree mutation rate using phylogenetic data from the genomes of great apes. We found that, when calibration information was correctly assigned to the humanâ»chimpanzee speciation time (and not to the coalescent time), estimates of phylogenetic mutation rates were statistically equivalent to the estimates previously reported using studies of human pedigrees. We conclude that, within the range of biologically realistic ancestral generation times, part of the difference between whole-genome phylogenetic and pedigree mutation rates is due to inappropriate assignment of fossil calibration information to the mean coalescent time instead of the speciation time. Although our results focus on the humanâ»chimpanzee divergence, our findings are general, and relevant to the inference of the timescale of the tree of life.
RESUMEN
Animal tissues need to be properly oxygenated for carrying out catabolic respiration and, as such, natural selection has presumably favored special molecules that can reversibly bind and transport oxygen. Hemoglobins, hemocyanins, and hemerythrins (Hrs) fulfill this role, with Hrs being the least studied. Knowledge of oxygen-binding proteins is crucial for understanding animal physiology. Hr genes are present in the three domains of life, Archaea, Bacteria, and Eukaryota; however, within Animalia, Hrs has been reported only in marine species in six phyla (Annelida, Brachiopoda, Priapulida, Bryozoa, Cnidaria, and Arthropoda). Given this observed Hr distribution, whether all metazoan Hrs share a common origin is circumspect. We investigated Hr diversity and evolution in metazoans, by employing in silico approaches to survey for Hrs from of 120 metazoan transcriptomes and genomes. We found 58 candidate Hr genes actively transcribed in 36 species distributed in 11 animal phyla, with new records in Echinodermata, Hemichordata, Mollusca, Nemertea, Phoronida, and Platyhelminthes. Moreover, we found that "Hrs" reported from Cnidaria and Arthropoda were not consistent with that of other metazoan Hrs. Contrary to previous suggestions that Hr genes were absent in deuterostomes, we find Hr genes present in deuterostomes and were likely present in early bilaterians, but not in nonbilaterian animal lineages. As expected, the Hr gene tree did not mirror metazoan phylogeny, suggesting that Hrs evolutionary history was complex and besides the oxygen carrying capacity, the drivers of Hr evolution may also consist of secondary functional specializations of the proteins, like immunological functions.
Asunto(s)
Hemeritrina/genética , Invertebrados/clasificación , Invertebrados/genética , Animales , Eucariontes/clasificación , Eucariontes/genética , Evolución Molecular , Hemeritrina/química , Modelos Moleculares , FilogeniaRESUMEN
BACKGROUND: Despite extensive study on hemoglobins and hemocyanins, little is known about hemerythrin (Hr) evolutionary history. Four subgroups of Hrs have been documented, including: circulating Hr (cHr), myohemerythrin (myoHr), ovohemerythrin (ovoHr), and neurohemerythrin (nHr). Annelids have the greatest diversity of oxygen carrying proteins among animals and are the only phylum in which all Hr subgroups have been documented. To examine Hr diversity in annelids and to further understand evolution of Hrs, we employed approaches to survey annelid transcriptomes in silico. RESULTS: Sequences of 214 putative Hr genes were identified from 44 annelid species in 40 different families and Bayesian inference revealed two major clades with strong statistical support. Notably, the topology of the Hr gene tree did not mirror the phylogeny of Annelida as presently understood, and we found evidence of extensive Hr gene duplication and loss in annelids. Gene tree topology supported monophyly of cHrs and a myoHr clade that included nHrs sequences, indicating these designations are functional rather than evolutionary. CONCLUSIONS: The presence of several cHrs in early branching taxa suggests that a variety of Hrs were present in the common ancestor of extant annelids. Although our analysis was limited to expressed-coding regions, our findings demonstrate a greater diversity of Hrs among annelids than previously reported.