Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Purinergic Signal ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999896

RESUMEN

Leishmania braziliensis is a pathogenic protozoan parasite that causes American Tegumentary Leishmaniasis (ATL), an important tropical neglected disease. ENTPDases are nucleotidases that hydrolyze intracellular and/or extracellular nucleotides. ENTPDases are known as regulators of purinergic signalling induced by extracellular nucleotides. Leishmania species have two isoforms of ENTPDase, and, particularly, ENTPDase2 seems to be involved in infectivity and virulence. In this study, we conducted the heterologous expression and biochemical characterization of the recombinant ENTPDase2 of L. braziliensis (rLbNTPDase2). Our results show that this enzyme is a canonical ENTPDase with apyrase activity, capable of hydrolysing triphosphate and diphosphate nucleotides, and it is dependent on divalent cations (calcium or magnesium). Substrate specificity was characterized as UDP>GDP>ADP>GTP>ATP=UTP. The enzyme showed optimal activity at a neutral to basic pH and was partially inhibited by suramin and DIDS. Furthermore, the low apparent Km for ADP suggests that the enzyme may play a role in adenosine-mediated signalling. The biochemical characterization of this enzyme can open new avenues for using LbNTPDase2 as a drug target.

2.
Vet Parasitol ; 301: 109638, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34920304

RESUMEN

Canine visceral leishmaniasis (CVL) is the most aggressive and lethal form of leishmaniasis manifesting in dogs and represents a major public health concern. Although there are sufficiently sensitive molecular tools for CVL diagnosis, they are not accessible at the main points of disease dissemination, in which context serodiagnosis has been used as an alternative tool on the epidemiological control. As an attempt to develop more accurate immunodiagnostic assays, many antigens have been tested over the years, on different platforms. This review aimed to access studies reporting new antigens that can be applied for CVL serodiagnosis. Articles published from January of 2016 to March of 2021 were retrieved from Google Scholar, Science Direct, and PubMed, using "Canine Visceral Leishmaniasis" and "Serodiagnosis" as keywords. In total, 1527 articles were identified, of which 42 were selected based on exclusion factors. Sensitivity, specificity, sample size, and sample quality data were extracted by manual curation and analyzed. Of the selected articles, 26 contemplated ELISA, which enabled a more thorough comparison and a critical review of these studies. Soluble Leishmania Antigens (SLA) and the A2 protein were used as controls in 53.8 and 46.15 % of these articles, respectively, and were evaluated separately; their frequent use was questioned. Subsequently, articles that evaluated other assay platforms, such as immunochromatography, immunosensors, and others, were also reported and evaluated. Finally, data relative to validation studies of commercial kits were briefly discussed. Our results show that there are several antigens with great potential for the development of accurate diagnostic tools, but further testing is required. The critical analysis also brings insights that can be useful for more assertive diagnostic development of more robust tools for CVL serodiagnosis.


Asunto(s)
Técnicas Biosensibles , Enfermedades de los Perros , Leishmania infantum , Leishmaniasis Visceral , Animales , Antígenos de Protozoos , Técnicas Biosensibles/veterinaria , Enfermedades de los Perros/diagnóstico , Perros , Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunoensayo/veterinaria , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/veterinaria , Sensibilidad y Especificidad , Pruebas Serológicas/veterinaria
3.
BMC Vet Res ; 16(1): 448, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213424

RESUMEN

BACKGROUND: Canine morbilivirus (canine distemper virus, CDV) is a highly contagious pathogen associated with high morbidity and mortality in susceptible carnivores. Although there are CDV vaccines available, the disease poses a huge threat to dogs and wildlife hosts due to vaccine failures and lack of effective treatment. Thus, the development of therapeutics is an urgent need to achieve rapid outbreak control and reduce mortality in target species. Gene silencing by RNA interference has emerged as a promising therapeutic approach against different human and animal viruses. In this study, plasmid-based short hairpin RNAs (shRNAs) against three different regions in either CDV nucleoprotein (N), or large polymerase (L) genes and recombinant adenovirus-expressing N-specific multi-shRNAs were generated. Viral cytopathic effect, virus titration, plaque-forming unit reduction, and real-time quantitative RT-PCR analysis were used to check the efficiency of constructs against CDV. RESULTS: In CDV-infected VerodogSLAM cells, shRNA-expressing plasmids targeting the N gene markedly inhibited the CDV replication in a dose-dependent manner, with viral genomes and titers being decreased by over 99%. Transfection of plasmid-based shRNAs against the L gene displayed weaker inhibition of viral RNA level and virus yield as compared to CDV N shRNAs. A combination of shRNAs targeting three sites in the N gene considerably reduced CDV RNA and viral titers, but their effect was not synergistic. Recombinant adenovirus-expressing multiple shRNAs against CDV N gene achieved a highly efficient knockdown of CDV N mRNAs and successful inhibition of CDV replication. CONCLUSIONS: We found that this strategy had strong silencing effects on CDV replication in vitro. Our findings indicate that the delivery of shRNAs using plasmid or adenovirus vectors potently inhibits CDV replication and provides a basis for the development of therapeutic strategies for clinical trials.


Asunto(s)
Virus del Moquillo Canino/genética , Moquillo/genética , Interferencia de ARN , ARN Interferente Pequeño , Adenoviridae , Animales , Línea Celular , Moquillo/terapia , Moquillo/virología , Perros , Marcación de Gen/métodos , Terapia Genética/métodos , Terapia Genética/veterinaria , Células HEK293 , Humanos , Plásmidos , Replicación Viral/genética
4.
Biochem Pharmacol ; 180: 114191, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32777278

RESUMEN

The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 µM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Leishmania braziliensis/efectos de los fármacos , Leishmania braziliensis/enzimología , Leishmaniasis Cutánea/enzimología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Leishmania braziliensis/ultraestructura , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/patología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/ultraestructura , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA