RESUMEN
Background: Household transmission studies seek to understand the transmission dynamics of a pathogen by estimating the risk of infection from household contacts and community exposures. We estimated within/extra-household SARS-CoV-2 infection risk and associated factors in a household cohort study in one of the most vulnerable neighbourhoods in Rio de Janeiro city. Methods: Individuals ≥1 years-old with suspected or confirmed COVID-19 in the past 30 days (index cases) and household members aged ≥1 year were enrolled and followed at 14 and 28 days (study period November/2020-December/2021). RT-PCR testing, COVID-19 symptoms, and SARS-CoV-2 serologies were ascertained in all visits. Chain binomial household transmission models were fitted using data from 2024 individuals (593 households). Findings: Extra-household infection risk was 74.2% (95% credible interval [CrI] 70.3-77.8), while within-household infection risk was 11.4% (95% CrI 5.7-17.2). Participants reporting having received two doses of a COVID-19 vaccine had lower extra-household (68.9%, 95% CrI 57.3-77.6) and within-household (4.1%, 95% CrI 0.4-16.6) infection risk. Within-household infection risk was higher among participants aged 10-19 years, from overcrowded households, and with low family income. Contrastingly, extra-household infection risk was higher among participants aged 20-29 years, unemployed, and public transportation users. Interpretation: Our study provides important insights into COVID-19 household/community transmission in a vulnerable population that resided in overcrowded households and who struggled to adhere to lockdown policies and social distancing measures. The high extra-household infection risk highlights the extreme social vulnerability of this population. Prioritising vaccination of the most socially vulnerable could protect these individuals and reduce widespread community transmission. Funding: Fundação Oswaldo Cruz, CNPq, FAPERJ, Royal Society, Instituto Serrapilheira, FAPESP.
RESUMEN
The innate immune system is the first line of defense against pathogens such as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The type I-interferon (IFN) response activation during the initial steps of infection is essential to prevent viral replication and tissue damage. SARS-CoV and SARS-CoV-2 can inhibit this activation, and individuals with a dysregulated IFN-I response are more likely to develop severe disease. Several mutations in different variants of SARS-CoV-2 have shown the potential to interfere with the immune system. Here, we evaluated the buffy coat transcriptome of individuals infected with Gamma or Delta variants of SARS-CoV-2. The Delta transcriptome presents more genes enriched in the innate immune response and Gamma in the adaptive immune response. Interactome and enriched promoter analysis showed that Delta could activate the INF-I response more effectively than Gamma. Two mutations in the N protein and one in the nsp6 protein found exclusively in Gamma have already been described as inhibitors of the interferon response pathway. This indicates that the Gamma variant evolved to evade the IFN-I response. Accordingly, in this work, we showed one of the mechanisms that variants of SARS-CoV-2 can use to avoid or interfere with the host Immune system.
Asunto(s)
COVID-19 , Interferón Tipo I , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Interferón Tipo I/genética , SARS-CoV-2 , Transcriptoma , COVID-19/genéticaRESUMEN
CONTEXT: Saturated fats found in diets known as high-fat, cafeteria, or Western diets appear to have a negative effect on bone structure; however, few studies have focused on investigating this association, and the data available in the literature remain controversial. OBJECTIVE: The aim of the current review was to investigate the effects of a high-fat dietary intake on the bone structure of Wistar rats. DATA SOURCES: A search for articles was carried out in the Pubmed/MEDLINE, Web of Science, Embase, and Scopus databases. DATA EXTRACTION: In total, 447 articles were found in the initial search; 5 articles were included in the systematic review, after application of the exclusion criteria. DATA ANALYSIS: The review was guided by the PICOS strategy and based on the PRISMA protocol for animal reviews. CONCLUSION: High-fat diets appear to affect bone structure of Wistar rats. Diet composition and exposure time are the factors determining the strength of the effect.
Asunto(s)
Dieta Alta en Grasa , Grasas de la Dieta , Ratas , Animales , Humanos , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Huesos , Ácidos GrasosRESUMEN
Human T lymphotropic virus 1 (HTLV-1) is a retrovirus associated with inflammatory diseases, including HTLV-1-associated myelopathy (HAM), and host genetic factors may be involved in disease evolution. The forkhead Box P3 (FOXP3) transcription factor is linked to homeostasis of the immune system, and the presence of polymorphisms in the promoter region of the FOXP3 gene should reflect its expression levels and consequent activation of regulatory T cells, which may contribute to severe inflammatory disorders, such as HAM. This study evaluated the rs2232365 polymorphism (-924 A/G) located in the promoter region of the FOXP3 gene and its association with HAM. Forty DNA samples from asymptomatic carriers and 25 samples from HAM patients were used, in addition to 130 control samples. The polymorphism was genotyped by conducting real-time polymerase chain reaction (PCR) (quantitative PCR [qPCR]) on extracted DNA. The proviral loads (PVLs) and CD4+ and CD8+ T lymphocyte counts were determined by qPCR and FACSCalibur flow cytometry, respectively. The PVLs, CD4+ T lymphocyte concentrations, and tumor necrosis factor-α dosages were considered predictive factors of the clinical profiles of HTLV-1 infection, all of which had higher levels in the HAM group. Carriers of the GG genotype for the polymorphism rs2232365 had high PVLs and CD4+ T lymphocyte concentrations.
Asunto(s)
Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Humanos , Paraparesia Espástica Tropical/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Polimorfismo de Nucleótido Simple , Infecciones por HTLV-I/genética , Factores de Transcripción Forkhead/genética , Carga Viral , Provirus/genética , Provirus/metabolismoRESUMEN
Elucidating cellulose-lignin interactions at the molecular and nanometric scales is an important research topic with impacts on several pathways of biomass valorization. Here, the interaction forces between a cellulosic substrate and lignin are investigated. Atomic force microscopy with lignin-coated tips is employed to probe the site-specific adhesion to a cellulose film in liquid water. Over seven thousand force-curves are analyzed by a machine-learning approach to cluster the experimental data into types of cellulose-tip interactions. The molecular mechanisms for distinct types of cellulose-lignin interactions are revealed by molecular dynamics simulations of lignin globules interacting with different cellulose Iß crystal facets. This unique combination of experimental force-curves, data-driven analysis, and molecular simulations opens a new approach of investigation and updates the understanding of cellulose-lignin interactions at the nanoscale.
Asunto(s)
Celulosa , Lignina , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Aprendizaje AutomáticoRESUMEN
Background: COVID-19 serosurveys allow for the monitoring of the level of SARS-CoV-2 transmission and support data-driven decisions. We estimated the seroprevalence of anti-SARS-CoV-2 antibodies in a large favela complex in Rio de Janeiro, Brazil. Methods: A population-based panel study was conducted in Complexo de Manguinhos (16 favelas) with a probabilistic sampling of participants aged ≥1 year who were randomly selected from a census of individuals registered in primary health care clinics that serve the area. Participants answered a structured interview and provided blood samples for serology. Multilevel regression models (with random intercepts to account for participants' favela of residence) were used to assess factors associated with having anti-S IgG antibodies. Secondary analyses estimated seroprevalence using an additional anti-N IgG assay. Findings: 4,033 participants were included (from Sep/2020 to Feb/2021, 22 epidemic weeks), the median age was 39·8 years (IQR:21·8-57·7), 61% were female, 41% were mixed-race (Pardo) and 23% Black. Overall prevalence was 49·0% (95%CI:46·8%-51·2%) which varied across favelas (from 68·3% to 31·4%). Lower prevalence estimates were found when using the anti-N IgG assay. Odds of having anti-S IgG antibodies were highest for young adults, and those reporting larger household size, poor adherence to social distancing and use of public transportation. Interpretation: We found a significantly higher prevalence of anti-S IgG antibodies than initially anticipated. Disparities in estimates obtained using different serological assays highlight the need for cautious interpretation of serosurveys estimates given the heterogeneity of exposure in communities, loss of immunological biomarkers, serological antigen target, and variant-specific test affinity. Funding: Fundação Oswaldo Cruz, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), the European Union's Horizon 2020 research and innovation programme, Royal Society, Serrapilheira Institute, and FAPESP.
RESUMEN
Genetic variations in components of the immune response seem to be an important factor that contributes to the manifestation of symptoms of some diseases related to HTLV-1 infection. Nerve growth factor (NGF) and the p75 neurotrophin receptor (p75NTR) are related to the maintenance of neurons and the activation of the immune response. In this study, we evaluated the association of the NGF -198C/T, NGF Ala35Val, and p75NTR Ser205Leu polymorphisms with HTLV-1 infection and plasma cytokine levels in 166 samples from individuals infected with HTLV-1 (59 symptomatic and 107 asymptomatic). The genotyping and quantification of the proviral load were performed by real-time PCR, and cytokine levels were measured by ELISA. The NGF -198C/T and NGF Ala35Val polymorphisms were not associated with HTLV-1 infection. The frequency of the Ser/Leu genotype of p75NTR Ser205Leu was more frequent in the control group (p = 0.0385), and the Ser/Leu genotype and allele Leu were more frequent among the asymptomatic (p < 0.05), especially with respect to the HTLV-1-associated myelopathy (HAM) group (p < 0.05). The symptomatic showed a higher proviral load and higher TNF-α and IL-10 levels (p < 0.05). Asymptomatic carriers of the Ser/Leu genotype (p = 0.0797) had lower levels of proviral load and higher levels of TNF-α (p = 0.0507). Based on the results obtained, we conclude that the p75NTR Ser205Leu polymorphism may be associated with reduced susceptibility to HTLV-1 infection, a lower risk of developing symptoms, including HAM, and better infection control.
Asunto(s)
Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Citocinas , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Factor de Crecimiento Nervioso , Provirus/genética , Receptor de Factor de Crecimiento Nervioso , Factor de Necrosis Tumoral alfa , Carga ViralRESUMEN
OBJECTIVES: The present study aimed to assess the oxidative stress and the viability of dental pulp cells stimulated by lipopolysaccharide (LPS) and submitted to photobiomodulation (PBM) with infrared light-emitting diode (LED, 850 nm). DESIGN: Three healthy primary teeth (n = 3) were collected and seeded in 24-well plates with 10 µg/mL of LPS to induce inflammatory mediator formation. The cells were irradiated (850 nm, 40 mW/cm2 and 80 mW/cm2) at the proposed radiant exposures of 0 (control), 4, 15, and 30 J/cm2 shortly after LPS supplementation. The tests were performed 24 h after irradiation to assess mitochondrial activity (MTT assay), the number of viable cells (Trypan Blue), cell morphology (Scanning Electron Microscopy - SEM), and the quantification of Nitric Oxide (NO) and Reactive Oxygen Species (ROS). The data were analyzed using Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS: The irradiated groups showed larger viable cells number than the non-irradiated group with LPS (p < 0.0001). All irradiation parameters decreased ROS concentrations after LPS application compared to the non-irradiated group (p < 0.05). All irradiation parameters enhanced the NO values compared to those of the control group (p < 0.05). The SEM images showed cells with regular morphology that adhered to the substrate. CONCLUSIONS: According to the parameters used in this study, the radiant exposure of 15 J/cm2 and irradiance of 40 mW/cm2 were the most effective irradiation parameters to stimulate and modulate oxidative stress in the primary teeth-derived dental pulp cells.
Asunto(s)
Pulpa Dental , Rayos Infrarrojos , Supervivencia Celular , Estrés Oxidativo , Especies Reactivas de OxígenoRESUMEN
Since the discovery of polydopamine (PDA), there has been a lot of progress on using this substance to functionalize many different surfaces. However, little attention has been given to prepare functionalized surfaces for the preparation of flexible electrochemical paper-based devices. After fabricating the electrodes on paper substrates, we formed PDA on the surface of the working electrode using a chemical polymerization route. PDA nanofilms on carbon were characterized by contact angle (CA) experiments, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy (topography and electrical measurements) and electrochemical techniques. We observed that PDA introduces chemical functionalities (RNH2 and RCâO) that decrease the CA of the electrode. Moreover, PDA nanofilms did not block the heterogeneous electron transfer. In fact, we observed one of the highest standard heterogeneous rate constants (ks ) for electrochemical paper-based electrodes (2.5 ± 0.1) × 10-3 cm s-1 , which is an essential parameter to obtain larger currents. In addition, our results suggest that carbonyl functionalities are ascribed for the redox activity of the nanofilms. As a proof-of-concept, the electrooxidation of nicotinamide adenine dinucleotide showed remarkable features, such as, lower oxidation potential, electrocatalytic peak currents more than 30 times higher when compared to unmodified paper-based electrodes and electrocatalytic rate constant (kobs ) of (8.2 ± 0.6) × 102 L mol-1 s-1 .
Asunto(s)
Indoles , Polímeros , Técnicas Electroquímicas , Electrodos , Oxidación-ReducciónRESUMEN
OBJECTIVES: The aim of this review is to highlight recent progress in the field of biomaterials-mediated dental pulp tissue engineering. Specifically, we aim to underscore the critical design criteria of biomaterial platforms that are advantageous for pulp tissue engineering, discuss models for preclinical evaluation, and present new and innovative multifunctional strategies that hold promise for clinical translation. MATERIALS AND METHODS: The current article is a comprehensive overview of recent progress over the last 5 years. In detail, we surveyed the literature in regenerative pulp biology, including novel biologic and biomaterials approaches, and those that combined multiple strategies, towards more clinically relevant models. PubMed searches were performed using the keywords: "regenerative dentistry," "dental pulp regeneration," "regenerative endodontics," and "dental pulp therapy." RESULTS: Significant contributions to the field of regenerative dentistry have been made in the last 5 years, as evidenced by a significant body of publications. We chose exemplary studies that we believe are progressive towards clinically translatable solutions. We close this review with an outlook towards the future of pulp regeneration strategies and their clinical translation. CONCLUSIONS: Current clinical treatments lack functional and predictable pulp regeneration and are more focused on the treatment of the consequences of pulp exposure, rather than the restoration of healthy dental pulp. CLINICAL RELEVANCE: Clinically, there is great demand for bioinspired biomaterial strategies that are safe, efficacious, and easy to use, and clinicians are eager for their clinical translation. In particular, we place emphasis on strategies that combine favorable angiogenesis, mineralization, and functional tissue formation, while limiting immune reaction, risk of microbial infection, and pulp necrosis.
Asunto(s)
Endodoncia , Endodoncia Regenerativa , Materiales Biocompatibles , Pulpa Dental , Humanos , Dispositivos Laboratorio en un Chip , Regeneración , Ingeniería de TejidosRESUMEN
Full waveform inversion is an advantageous technique for obtaining high-resolution subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common to use information from wells as previous information to decrease the ambiguity of the obtained results. For this, we propose adding a relative entropy term to the formalism of the full waveform inversion. In this context, entropy will be just a nomenclature for regularisation and will have the role of helping the converge to the global minimum. The application of entropy in inverse problems usually involves formulating the problem, so that it is possible to use statistical concepts. To avoid this step, we propose a deterministic application to the full waveform inversion. We will discuss some aspects of relative entropy and show three different ways of using them to add prior information through entropy in the inverse problem. We use a dynamic weighting scheme to add prior information through entropy. The idea is that the prior information can help to find the path of the global minimum at the beginning of the inversion process. In all cases, the prior information can be incorporated very quickly into the full waveform inversion and lead the inversion to the desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition of entropy relative to full waveform inversion can provide a result with better resolution. In regions where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior information through the relative entropy for synthetic data. We will show that the prior information added through entropy in full-waveform inversion formalism will prove to be a way to avoid local minimums.
RESUMEN
Cell-penetrating peptides (CPPs) are a topical subject potentially exploitable for creating nanotherapeutics for the delivery of bioactive loads. These compounds are often classified into three major categories according to their physicochemical characteristics: cationic, amphiphilic, and hydrophobic. Among them, the group of hydrophobic CPPs has received increasing attention in recent years due to toxicity concerns posed by highly cationic CPPs. The hexapeptide PFVYLI (P, proline; F, phenylalanine; V, valine; Y, tyrosine; L, leucine; and I, isoleucine), a fragment derived from the C-terminal portion of α1-antitrypsin, is a prototypal example of hydrophobic CPP. This sequence shows reduced cytotoxicity and a capacity of nuclear localization, and its small size readily hints at its suitability as a building block to construct nanostructured materials. In this study, we examine the self-assembling properties of PFVYLI and investigate its ability to form noncovalent complexes with nucleic acids. By using a combination of biophysical tools including synchrotron small-angle X-ray scattering and atomic force microscopy-based infrared spectroscopy, we discovered that this CPP self-assembles into discrete nanofibrils with remarkable amyloidogenic features. Over the course of days, these fibrils coalesce into rodlike crystals that easily reach the micrometer range. Despite lacking cationic residues in the composition, PFVYLI forms noncovalent complexes with nucleic acids that retain ß-sheet pairing found in amyloid aggregates. In vitro vectorization experiments performed with double-stranded DNA fragments indicate that complexes promote the internalization of nucleic acids, revealing that tropism toward cell membranes is preserved upon complexation. On the other hand, transfection assays with splice-correction oligonucleotides (SCOs) for luciferase expression show limited bioactivity across a narrow concentration window, suggesting that the propensity to form amyloidogenic aggregates may trigger endosomal entrapment. We anticipate that the findings presented here open perspectives for using this archetypical hydrophobic CPP in the fabrication of nanostructured scaffolds, which potentially integrate properties of amyloids and translocation capabilities of CPPs.
Asunto(s)
Péptidos de Penetración Celular , Ácidos Nucleicos , Proteínas Amiloidogénicas/genética , Péptidos de Penetración Celular/química , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Nucleicos/metabolismo , Oligonucleótidos/genética , TransfecciónRESUMEN
Full-waveform inversion (FWI) is a powerful technique to obtain high-resolution subsurface models, from seismic data. However, FWI is an ill-posed problem, which means that the solution is not unique, and therefore the expert use of the information is required to mitigate the FWI ill-posedness, especially when wide-aperture seismic acquisitions are considered. In this way, we investigate the multiscale frequency-domain FWI by using a weighting operator according to the distances between each source-receiver pair. In this work, we propose a weighting operator that acts on the data misfit as preconditioning of the objective function that depends on the source-receiver distance (offset) and the frequency used during the inversion. The proposed operator emphasizes information from long offsets, especially at low frequencies, and as a consequence improves the update of deep geological structures. To demonstrate the effectiveness of our proposal, we perform numerical simulations on 2D acoustic Marmousi2 case study, which is widely used in seismic imaging tests, considering three different scenarios. In the first two ones, we have used an acquisition geometry with a maximum offset of 4 and 8 km, respectively. In the last one, we have considered all-offsets. The results show that our proposal outperforms similar strategies, for all scenarios, providing more reliable quantitative subsurface models. In fact, our inversion result has the lowest error and the highest similarity to the true model than similar approaches.
Asunto(s)
Modelos Teóricos , AlgoritmosRESUMEN
STATEMENT OF PROBLEM: If the components in the acrylic resins used to fabricate interim crows are cytotoxic, they can interfere with the integrity of the adjacent periodontal tissue and the dentin-pulp complex. PURPOSE: The purpose of this in vitro study was to assess the cytotoxicity of resin-based materials used to prepare interim crowns. MATERIAL AND METHODS: The following materials were used in this study: CAR, conventional acrylic resin powder and liquid; BR, bis-acrylic resin; and PAR, pressed acrylic resin of the CAD-CAM type. Glass disks were used as the control (Co). Oral epithelial cells (NOK) were seeded on glass disks and standardized disks prepared with the resins under study. After incubation for 24 hours, the cells were analyzed for viability (Alamar Blue and Live or Dead), adhesion, and morphology (SEM and fluorescence), as well as epidermal growth factor synthesis (EGF-ELISA). The surface roughness (Ra) of test specimens was evaluated under a confocal microscope. The data were submitted to ANOVA and the Tukey HSD statistical tests (α=.05). RESULTS: The highest Ra value was observed in BR in comparison with CAR, PAR, and Co (P<.05). The highest viability, adhesion, and EGF synthesis values were determined for the cells in contact with PAR (P<.001). CONCLUSIONS: The computer-aided design and computer-aided manufacturing (CAD-CAM)-type resin favored adhesion, metabolism, and epithelial cell proliferation, and it was therefore considered cytocompatible.
Asunto(s)
Resinas Acrílicas , Coronas , Resinas Compuestas , Diseño Asistido por Computadora , Materiales Dentales , Ensayo de Materiales , Propiedades de SuperficieRESUMEN
Human T-lymphotropic virus type 1 (HTLV-1) deregulates the immune system and cell cycle, resulting in loss of immune tolerance and disease, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Three prime repair exonuclease 1 (TREX1) maintains innate immune tolerance of the host and host-cell permissiveness to retroviral infections. TREX1 polymorphisms may influence the course of infection and autoimmune manifestations. The influence of TREX1 531C/T polymorphism was investigated in HTLV-1 infection and development of symptoms among 151 persons infected with HTLV-1 (32 HAM/TSP, 19 rheumatologic manifestations, two dermatitis, five more than one diagnosis, two probable HAM/TSP, and 91 asymptomatic individuals) and 100 uninfected persons in the control group. Polymorphism genotyping and proviral load quantification were performed by real-time polymerase chain reaction (PCR) and antinuclear antibodies (ANAs) were screened by an indirect immunofluorescence assay. No statistically significant difference was found in polymorphism genotype and allele frequencies between the infected and control groups. HAM/TSP patients showed higher frequency of TT genotype than asymptomatic persons (p = 0.0339). Proviral load was significantly higher among individuals with CT/TT genotypes and CC genotype carriers had lower proviral load and higher levels of proinflammatory cytokines. ANAs were present only in the HAM/TSP group. TREX1 531C>T polymorphism seems to be associated with TREX-1 regulation and HTLV-1 infection.
Asunto(s)
Exodesoxirribonucleasas/genética , Predisposición Genética a la Enfermedad , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Fosfoproteínas/genética , Polimorfismo de Nucleótido Simple , Carga Viral , Alelos , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Interacciones Huésped-Patógeno/genética , Humanos , MasculinoRESUMEN
Twin hematopoietic chimera in humans is a phenomenon that was discovered accidentally and the prevalence of which remains unclear. The resolution of chimera cases requires studying family medical records, data analysis, and investigations of hematopoietic cells and cells from other tissues. The interactions among ABO, Lewis, and secretor histo-blood group systems are explored to resolve cases of hematopoietic chimera. Here we report a rare case of hematopoietic chimera where twins present a mixed field reaction in the ABO, Rh, and Kidd red blood cell phenotyping. Using red blood cells separated from the mixed field as well as molecular approaches and investigations of family members, we identify inconsistent genotypes with the Mendelian inheritance pattern when comparing the peripheral blood with the buccal epithelium of the male twin and his twin sister. Analysis of the ABO, Lewis, and secretor phenotypes, and genomic DNA from buccal epithelium showed the genotypes ABO*A1.01/ABO*B.01 and FUT2*01N.02/ FUT2*01N.02 in the male twin and the genotypes ABO*O.01.01/ABO*O.01.02 and FUT2*01/FUT2*01 in the female twin. The results of the HLA-DRB1 genotyping showed inconsistency between the male and his twin sister. We conclude that the serological analyses combined with molecular approaches used in this study are good tools to resolve cases of hematopoietic chimera.
RESUMEN
The interaction of single-layer graphene oxide (SLGO) and multi-layered graphene oxide (MLGO) with a cell culture medium (i.e. DMEM) was studied by evaluating fetal bovine serum (FBS) protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. SLGO and MLGO exhibited different colloidal behavior in the culture medium, which was visualized by cryogenic transmission electron microscopy in situ analysis. Exploring proteomics and bioinformatics tools, 394 and 290 proteins were identified on the SLGO and MLGO hard corona compositions, respectively. From this amount, 115 proteins were exclusively detected on the SLGO and merely 11 on MLGO. SLGO enriched FBS proteins involved in metabolic processes and signal transduction, while MLGO enriched proteins involved in cellular development/structure, and lipid transport/metabolic processes. Such a distinct corona profile is due to differences on surface chemistry, aggregation behavior and the surface area of GO materials. Hydrophilic interactions were found to play a greater role in protein adsorption by MLGO than SLGO. Our results point out implications for in vitro studies of graphene oxide materials concerning the effective dose delivered to cells and corona bioactivity. Finally, we demonstrated the importance of integrating conventional and modern techniques thoroughly to understand the GO-FBS complexes towards more precise, reliable and advanced in vitro nanotoxicity assessment.
Asunto(s)
Proteínas Sanguíneas/química , Medios de Cultivo/química , Grafito/química , Nanopartículas/toxicidad , Corona de Proteínas/química , Pruebas de Toxicidad , Animales , Bovinos , Proteómica , AguaRESUMEN
INTRODUCTION: The improvement of biomaterials capable of driving the regeneration of the pulp-dentin complex mediated by resident cells is the goal of regenerative dentistry. In the present investigation, a chitosan scaffold (CHSC) that released bioactive concentrations of simvastatin (SIM) was tested, aimed at the development of a cell-free tissue engineering system. METHODS: First, we performed a dose-response assay to select the bioactive dose of SIM capable of inducing an odontoblastic phenotype in dental pulp cells (DPCs); after which we evaluated the synergistic effect of this dosage with the CHSC/DPC construct. SIM at 1.0 µmol/L (CHSC-SIM1.0) and 0.5 µmol/L were incorporated into the CHSC, and cell viability, adhesion, and calcium deposition were evaluated. Finally, we assessed the biomaterials in an artificial pulp chamber/3-dimensional culture model to simulate the cell-free approach in vitro. RESULTS: SIM at 0.1 µmol/L was selected as the bioactive dose. This drug was capable of strongly inducing an odontoblastic phenotype on the DPC/CHSC construct. The incorporation of SIM into CHSC had no deleterious effect on cell viability and adhesion to the scaffold structure. CHSC-SIM1.0 led to significantly higher calcium-rich matrix deposition on scaffold/dentin disc assay compared with the control (CHSC). This biomaterial induced the migration of DPCs from a 3-dimensional culture to its surface as well as stimulated significantly higher expressions of alkaline phosphatase, collagen type 1 alpha 1, dentin matrix acidic phosphoprotein 1, and dentin sialophosphoprotein on 3-dimensional-cultured DPCs than on those in contact with CHSC. CONCLUSIONS: CHSC-SIM1.0 scaffold was capable of increasing the chemotaxis and regenerative potential of DPCs.
Asunto(s)
Sistema Libre de Células/efectos de los fármacos , Quitosano/uso terapéutico , Pulpa Dental/fisiología , Dentina/fisiología , Regeneración/efectos de los fármacos , Simvastatina/uso terapéutico , Ingeniería de Tejidos/métodos , Andamios del Tejido , Sistema Libre de Células/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Endodoncia Regenerativa/métodos , Simvastatina/administración & dosificación , Adulto JovenRESUMEN
In this study, we investigated the anti-inflammatory, odontogenic and pro-angiogenic effects of integrating simvastatin and nanofibrous poly(l-lactic acid) (NF-PLLA) scaffolds on dental pulp cells (DPCs). Highly porous NF-PLLA scaffolds that mimic the nanofibrous architecture of extracellular matrix were first fabricated, then seeded with human DPCs and cultured with 0.1⯵M simvastatin and/or 10⯵g/mL pro-inflammatory stimulator lipopolysaccharide (LPS). The gene expression of pro-inflammatory mediators (TNF-α, IL-1ß and MMP-9 mRNA) and odontoblastic markers (ALP activity, calcium content, DSPP, DMP-1 and BMP-2 mRNA) were quantified after long-term culture in vitro. In addition, we evaluated the scaffold's pro-angiogenic potential after 24â¯h of in vitro co-culture with endothelial cells. Finally, we assessed the combined effects of simvastatin and NF-PLLA scaffolds in vivo using a subcutaneous implantation mouse model. The in vitro studies demonstrated that, compared with the DPC/NF-PLLA scaffold constructs cultured only with pro-inflammatory stimulator LPS, adding simvastatin significantly repress the expression of pro-inflammatory mediators. Treating LPS+ DPC/NF-PLLA constructs with simvastatin also reverted the negative effects of LPS on expression of odontoblastic markers in vitro and in vivo. Western blot analysis demonstrated that these effects were related to a reduction in NFkBp65 phosphorylation and up-regulation of PPARγ expression, as well as to increased phosphorylation of pERK1/2 and pSmad1, mediated by simvastatin on LPS-stimulated DPCs. The DPC/NF-PLLA constructs treated with LPS/simvastatin also led to an increase in vessel-like structures, correlated with increased VEGF expression in both DPSCs and endothelial cells. Therefore, the combination of low dosage simvastatin and NF-PLLA scaffolds appears to be a promising strategy for dentin regeneration with inflamed dental pulp tissue, by minimizing the inflammatory reaction and increasing the regenerative potential of resident stem cells. STATEMENT OF SIGNIFICANCE: The regeneration potential of stem cells is dependent on their microenvironment. In this study, we investigated the effect of the microenvironment of dental pulp stem cells (DPSCs), including 3D structure of a macroporous and nanofibrous scaffold, the inflammatory stimulus lipopolysaccharide (LPS) and a biological molecule simvastatin, on their regenerative potential of mineralized dentin tissue. The results demonstrated that LPS upregulated inflammatory mediators and suppressed the odontogenic potential of DPSCs. Known as a lipid-lowing agent, simvastatin was excitingly found to repress the expression of pro-inflammatory mediators, up-regulate odontoblastic markers, and exert a pro-angiogenic effect on endothelial cells, resulting in enhanced vascularization and mineralized dentin tissue regeneration in a biomimetic 3D tissue engineering scaffold. This novel finding is significant for the fields of stem cells, inflammation and dental tissue regeneration.
Asunto(s)
Pulpa Dental/citología , Inflamación/patología , Nanofibras/química , Odontogénesis/efectos de los fármacos , Poliésteres/química , Simvastatina/farmacología , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lipopolisacáridos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto JovenRESUMEN
Human T-lymphotropic virus 1 (HTLV-1) infection has been associated with ATL and inflammatory diseases but remains a neglected health problem. HTLV-1 associated diseases were originally described as sporadic entities, but family aggregations have been reported. Viral, genetic, immunological and behavioral factors were used to explain family clusters, but until now a clear explanation remains uncertain. In the present study we report, for the first time, a family cluster of diseased persons presenting the infection across three generations associated with FAS -670A/G polymorphism.