RESUMEN
The need to increase food production to address the world population growth can only be fulfilled with precision agriculture strategies to increase crop yield with minimal expansion of the cultivated area. One example is site-specific fertilization based on accurate monitoring of soil nutrient levels, which can be made more cost-effective using sensors. This study developed an impedimetric multisensor array using ion-selective membranes to analyze soil samples enriched with macronutrients (N, P, and K), which is compared with another array based on layer-by-layer films. The results obtained from both devices are analyzed with multidimensional projection techniques and machine learning methods, where a decision tree model algorithm chooses the calibrations (best frequencies and sensors). The multicalibration space method indicates that both devices effectively distinguished all soil samples tested, with the ion-selective membrane setup presenting a higher sensitivity to K content. These findings pave the way for more environmentally friendly and efficient agricultural practices, facilitating the mapping of cropping areas for precise fertilizer application and optimized crop yield.
RESUMEN
Wireless communication technologies, particularly radio frequency (RF), have been widely explored for wearable electronics with secure and user-friendly information transmission. By exploiting the operational principle of chemically actuated resonant devices (CARDs) and the electrical response observed in chemiresistive materials, we propose a simple and hands-on alternative to design and manufacture RF tags that function as CARDs for wireless sensing of meat freshness. Specifically, the RF antennas were meticulously designed and fabricated by lithography onto a flexible substrate with conductive tape, and the RF signal was characterized in terms of amplitude and peak resonant frequency. Subsequently, a single-walled carbon nanotube (SWCNT)/MoS2/In2O3 chemiresistive composite was incorporated into the RF tag to convey it as CARDs. The RF signal was then utilized to establish a correlation between the sensor's electrical response and the RF attenuation signal (reflection coefficient) in the presence of volatile amines and seafood (shrimp) samples. The freshness of the seafood samples was systematically assessed throughout the storage time by utilizing the CARDs, thereby underscoring their effective potential for monitoring food quality. Specifically, the developed wireless tags provide cumulative amine exposure data within the food package, demonstrating a gradual decrease in radio frequency signals. This study illustrates the versatility of RF tags integrated with chemiresistors as a promising pathway toward scalable, affordable, and portable wireless chemical sensors.
Asunto(s)
Calidad de los Alimentos , Carne , Carne/análisis , AminasRESUMEN
The ANESPSAT, a synthetic spilanthol derivative, and its nanoformulation were evaluated against Rhipicephalus microplus and Amblyomma sculptum ticks. ANESPSAT activity was compared with spilanthol and derivatives (ANESPE and others). The compound was synthesized in a gram-scale by a 2-step process, comprising a direct ester amidation and a Horner-Wadsworth- Emmons reaction. The nanoemulsions were produced by coarse homogenization followed by high-energy ultrasonication, in which hydrodynamic diameter, polydispersity index, and zeta potential remained stable. The spilanthol-eugenol hybrid derivatives did not show significant acaricidal activity. ANESPE killed 83% of the R. microplus larvae at 30 mg.mL-1, while ANESPSAT killed 97% at 0.5 mg.mL-1, showing to be the most active compound. Spilanthol and ANESPSAT had similar high mortality rates for tick larvae, with LC50 values of 0.10 and 0.14 mg.mL-1 for R. microplus larvae, and 0.04 and 0.48 mg.mL-1 for A. sculptum larvae, respectively. The efficacy of spilanthol was lower against R. microplus engorged females when compared with ANESPSAT, which was highly effective (>98%) against R. microplus engorged females. The nanoemulsion with ANESPSAT was effective against tick females, preventing egg laying and achieving 100% efficacy at 2.5 mg.mL-1. Spilanthol had only 59% efficacy at 10 mg.mL-1. The results suggest that ANESPSAT, a natural product derivative, could be used in novel formulations for tick management that might be safer and environmentally friendly.
Asunto(s)
Acaricidas , Rhipicephalus , Femenino , Animales , Acaricidas/farmacología , Alcamidas Poliinsaturadas , LarvaRESUMEN
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Asunto(s)
Fibroínas , Nanofibras , Humanos , Fibroínas/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos , Nanofibras/química , Polímeros , Seda/química , Andamios del Tejido/químicaRESUMEN
Biotransformation of steroids by fungi has been raised as a successful, eco-friendly, and cost-effective biotechnological alternative for chemical derivatization. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes that carry out uncommon reactions. Moreover, using nanofibrous membranes as support for immobilizing fungal cells is a powerful strategy to improve their performance by enabling the combined action of adsorption and transformation processes, along with increasing the stability of the fungal cell. In the present study, we report the use of polyacrylonitrile nanofibrous membrane (PAN NFM) produced by electrospinning as supporting material for immobilizing the endophytic fungus Penicillium citrinum H7 aiming the biotransformation of progesterone. The PAN@H7 NFM displayed a high progesterone transformation efficiency (above 90%). The investigation of the biotransformation pathway of progesterone allowed the putative structural characterization of its main fungal metabolite by GC-MS analysis. The oxidative potential of P. citrinum H7 was selective for the C-17 position of the steroidal nucleus.
Asunto(s)
Nanofibras , Nanofibras/química , Progesterona , BiotransformaciónRESUMEN
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
RESUMEN
Nanomaterial-based wound dressings have been extensively studied for the treatment of both minor and life-threatening tissue injuries. These wound dressings must possess several crucial characteristics, such as tissue compatibility, non-toxicity, appropriate biodegradability to facilitate wound healing, effective antibacterial activity to prevent infection, and adequate physical and mechanical strength to withstand repetitive dynamic forces that could potentially disrupt the healing process. Nevertheless, the development of nanostructured wound dressings that incorporate various functional micro- and nanomaterials in distinct architectures, each serving specific purposes, presents significant challenges. In this study, we successfully developed a novel multifunctional wound dressing based on poly(lactic acid) (PLA) fibrous membranes produced by solution-blow spinning (SBS) and electrospinning. The PLA-based membranes underwent surface modifications aimed at tailoring their properties for utilization as effective wound dressing platforms. Initially, beta-chitin whiskers were deposited onto the membrane surface through filtration, imparting hydrophilic character. Afterward, silver nanoparticles (AgNPs) were incorporated onto the beta-chitin layer using a spray deposition method, resulting in platforms with antimicrobial properties against both Staphylococcus aureus and Escherichia coli. Cytotoxicity studies demonstrated the biocompatibility of the membranes with the neonatal human dermal fibroblast (HDFn) cell line. Moreover, bilayer membranes exhibited a high surface area and porosity (> 80%), remarkable stability in aqueous media, and favorable mechanical properties, making them promising candidates for application as multifunctional wound dressings.
RESUMEN
The current industrial and human activities scenario has accelerated the widespread use of endocrine-disrupting compounds (EDCs), which can be found in everyday products, including plastic containers, bottles, toys, cosmetics, etc., but can pose a severe risk to human health and the environment. In this regard, fungal bioremediation appears as a green and cost-effective approach to removing pollutants from water resources. Besides, immobilizing fungal cells onto nanofibrous membranes appears as an innovative strategy to improve remediation performance by allowing the adsorption and degradation to occur simultaneously. Herein, we developed a novel nanostructured bioremediation platform based on polyacrylonitrile nanofibrous membrane (PAN NFM) as supporting material for immobilizing an endophytic fungus to remove bisphenol A (BPA), a typical EDC. The endophytic strain was isolated from Handroanthus impetiginosus leaves and identified as Phanerochaete sp. H2 by molecular methods. The successful assembly of fungus onto the PAN NFM surface was confirmed by scanning electron microscopy (SEM). Compared with free fungus cells, the PAN@H2 NFM displayed a high BPA removal efficiency (above 85%) at an initial concentration of 5 ppm, suggesting synergistic removal by simultaneous adsorption and biotransformation. Moreover, the biotransformation pathway was investigated, and the chemical structures of fungal metabolites of BPA were identified by ultra-high performance liquid chromatography - high-resolution mass (UHPLC-HRMS) analysis. In general, our results suggest that by combining the advantages of enzymatic activity and nanofibrous structure, the novel platform has the potential to be applied in the bioremediation of varied EDCs or even other pollutants found in water resources.
Asunto(s)
Nanofibras , Tabebuia , Contaminantes Químicos del Agua , Humanos , Nanofibras/química , Fenoles/análisis , Hongos , Contaminantes Químicos del Agua/análisisRESUMEN
We review the recent progress that have led to the development of porous materials based on cellulose nanostructures found in plants and other resources. In light of the properties that emerge from the chemistry, shape and structural control, we discuss some of the most promising uses of a plant-based material, nanocellulose, in regenerative medicine. Following a brief discussion about the fundamental aspects of self-assembly of nanocellulose precursors, we review the key strategies needed for material synthesis and to adjust the architecture of the materials (using three-dimensional printing, freeze-casted porous materials, and electrospinning) according to their uses in tissue engineering, artificial organs, controlled drug delivery and wound healing systems, among others. For this purpose, we map the structure-property-function relationships of nanocellulose-based porous materials and examine the course of actions that are required to translate innovation from the laboratory to industry. Such efforts require attention to regulatory aspects and market pull. Finally, the key challenges and opportunities in this nascent field are critically reviewed.
RESUMEN
Therapeutic intervention to skin wounds requires covering the affected area with wound dressings. Interdisciplinary efforts have focused on the development of smart bandages that can perform multiple functions. In this direction, here, we designed a low cost (U$0.012 per cm2) multifunctional therapeutic wound dressing fabricated by loading curcumin (CC) into poly(ϵ-caprolactone) (PCL) nanofibers using solution blow spinning (SBS). The freestanding PCL/CC bandages were characterized by distinct physicochemical approaches and were successful in performing varied functions, including controlled release of CC, colorimetric indication of the wound conditions, barrier against microorganisms, being biocompatible, and providing a photosensitive platform for antimicrobial photodynamic therapy (aPDT). The chemical nature of PCL and CC and the interactions between these components allowed CC to be released for 192 h (ca. 8 days), which could be correlated with the Korsmeyer-Peppas model, with a burst release suitable to treat the inflammatory phase. Due to the CC keto-enol tautomerism, an optical indication of the healing status could be obtained using PCL/CC, which occurred immediately, ranging between red/orange and yellow shades. The effect against pathogenic microorganisms evaluated by agar disc-diffusion, affected skin wound simulation (ex vivo), and microbial penetration tests demonstrated the ability to block and inhibit microbial permeation in different environments. The biocompatibilities of PCL and PCL/CC were verified by in vitro cytotoxicity study, which demonstrated that cell viabilities average above 94 and 96% for human dermal fibroblasts. In addition, the proposed bandage responded to aPDT applied to an in vivo assay, showing that, when irritated, PCL/CC was able to reduce the bacteria present on the real wound of mice. In summary, our findings demonstrate that using PCL and CC to produce nonwovens by the SBS technique offers potential for the rapid fabrication of biocompatible and multifunctional wound dressings, paving the way for large-scale production and utilization of such dressings in the treatment of skin wounds.
Asunto(s)
Antiinfecciosos , Curcumina , Nanofibras , Ratones , Humanos , Animales , Nanofibras/química , Curcumina/farmacología , Piel , VendajesRESUMEN
We report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C-H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel.
RESUMEN
Fast, sensitive, simple, and cheap sensors are highly desirable to be applied in the health system because they improve point-of-care diagnostics, which can reduce the number of cases of infection or even deaths. In this context, here we report the development of a label-free genosensor using a screen-printed electrode modified with 2D-carbonylated graphitic carbon nitride (c-g-C3N4), poly(diallyldimethylammonium) chloride (PDDA), and glutathione-protected gold nanoparticles (GSH-AuNPs) for photoelectrochemical (PEC) detection of SARS-CoV-2. We also made use of Arduino and 3D printing to miniaturize the sensor device. The electrode surface was characterized by AFM and SEM techniques, and the gold nanoparticles by UV-Vis spectrophotometry. For SARS-CoV-2 detection, capture probe DNA was immobilized on the electrode surface. The hybridization of the final genosensor was tested with a synthetic single-strand DNA target and with natural saliva samples using the photoelectrochemistry method. The device presented a linear range from 1 to 10,000 fmol L-1 and a limit of detection of 2.2 and 3.4 fmol L-1 using cpDNA 1A and 3A respectively. The sensibility and accuracy found for the genosensor using cpDNA 1A using biological samples were 93.3 and 80% respectively, indicating the potential of the label-free and portable genosensor to detect SARS-CoV-2 RNA in saliva samples.
RESUMEN
Here, we report on the development of lipid-based nanostructures containing zidovudine (1 mg/mL) and lamivudine (0.5 mg/mL) for oral administration in the pediatric population, eliminating the use of organic solvents, which is in accordance with green chemistry principles. The formulations were obtained by ultrasonication using monoolein (MN) or phytantriol (PN), which presented narrow size distributions with similar mean particle sizes (~150 nm) determined by laser diffraction. The zeta potential and the pH values of the formulations were around -4.0 mV and 6.0, respectively. MN presented a slightly higher incorporation rate compared to PN. Nanoemulsions were obtained when using monoolein, while cubosomes were obtained when using phytantriol, as confirmed by Small-Angle X-ray Scattering. The formulations enabled drug release control and protection against acid degradation. The drug incorporation was effective and the analyses using an electronic tongue indicated a difference in palatability between the nanotechnological samples in comparison with the drug solutions. In conclusion, PN was considered to have the strongest potential as a novel oral formulation for pediatric HIV treatment.
RESUMEN
Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 µL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.
Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Humanos , Colorimetría/métodos , Oro/química , SARS-CoV-2 , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodos , Teléfono Inteligente , Prueba de COVID-19 , COVID-19/diagnóstico , Técnicas Biosensibles/métodosRESUMEN
The increasing demand for food production has necessitated the development of sensitive and reliable methods of analysis, which allow for the optimization of storage and distribution while ensuring food safety. Methods to quantify and monitor volatile and biogenic amines are key to minimizing the waste of high-protein foods and to enable the safe consumption of fresh products. Novel materials and device designs have allowed the development of portable and reliable sensors that make use of different transduction methods for amine detection and food quality monitoring. Herein, we review the past decade's advances in volatile amine sensors for food quality monitoring. First, the role of volatile and biogenic amines as a food-quality index is presented. Moreover, a comprehensive overview of the distinct amine gas sensors is provided according to the transduction method, operation strategies, and distinct materials (e.g., metal oxide semiconductors, conjugated polymers, carbon nanotubes, graphene and its derivatives, transition metal dichalcogenides, metal organic frameworks, MXenes, quantum dots, and dyes, among others) employed in each case. These include chemoresistive, fluorometric, colorimetric, and microgravimetric sensors. Emphasis is also given to sensor arrays that record the food quality fingerprints and wireless devices that operate as radiofrequency identification (RFID) tags. Finally, challenges and future opportunities on the development of new amine sensors are presented aiming to encourage further research and technological development of reliable, integrated, and remotely accessible devices for food-quality monitoring.
Asunto(s)
Nanotubos de Carbono , Materiales Inteligentes , Aminas Biogénicas , Calidad de los Alimentos , Inocuidad de los AlimentosRESUMEN
Edible coatings to extend the shelf life and preserve the quality of fruit and vegetables are highly demanded nowadays. Recently, plant-based edible coatings have gained importance in the context of sustainability, which in combination with suitable top-down process can render "greener" nanoemulsions with optimized properties. Herein we developed a carnauba wax nanoemulsion (CWN) by using a high-pressure processing to be applied as an edible coating for fruit and vegetables. The as-developed nanoemulsion properties were compared to conventional carnauba wax emulsion (CWM), where CWN showed particle size diameter of 44 nm and narrow distribution, while CWM displayed larger particles and wider size distribution (from 200 to 1700 nm). For assessment of the postharvest quality, cv. 'Debora' tomatoes, employed here as a model, were coated with CWN or CWM, at concentrations of 9 and 18%, and then compared to uncoated fruit during storage at 23 °C for 15 days. Evaluation of fruit quality, including sugar, acids, pH, water vapor loss, firmness, gloss, color, ethylene and respiratory activity, were assessed at every 3 days, while sensory test were carried out at the end of storage. Uncoated tomatoes presented the highest water loss values, meanwhile, firmness, ethylene, and respiratory activity were not largely modified by the coatings during storage. Tomatoes coated with the CWN exhibited the highest instrumental gloss and were preferred by consumers in sensory evaluations, indicating the potential of the as-developed carnauba wax green nanoemulsion for postharvest applications.
RESUMEN
Abstract The advanced stages of chronic kidney disease are associated with mineral and bone metabolism disorders, which increase the risk of serious complications such as uremic calciphylaxis. Below we present the case of a 65-year-old male patient with multiple comorbidities, including stage 5 chronic kidney disease with long-term hemodialysis treatment, who presented refractory secondary hyperparathyroidism complicated by penile necrosis secondary to uremic calciphylaxis. We believe this case may be useful in sensitizing the medical community on the seriousness of uremic calciphylaxis, emphasizing the importance of prevention and early diagnosis before complications such as necrosis occur. (Acta Med Colomb 2022; 47. DOI:https://doi.org/10.36104/amc.2022.2224).
Resumen Los estadios avanzados de la enfermedad renal crónica se asocian a alteraciones en el metabolismo mineral óseo, lo cual aumenta el riesgo de complicaciones graves como la calcifilaxis urémica. A continuación se presenta el caso de un paciente masculino de 65 años, con múltiples comorbilidades, entre ellas enfermedad renal crónica estadio 5 en terapia de hemodiálisis durante largo tiempo, quien presentó hiperparatiroidismo secundario de difícil manejo y se complicó con necrosis peneana secundaria a calcifilaxis urémica. Se considera que este caso puede ser útil para sensibilizar a la comunidad médica sobre la gravedad de la calcifilaxis urémica por lo cual es muy importante la prevención y realización de un diagnóstico temprano antes de que se produzcan complicaciones como la necrosis. (Acta Med Colomb 2022; 47. DOI:https://doi.org/10.36104/amc.2022.2224).
RESUMEN
Periodontitis is a chronic inflammatory disease that can lead to significant destruction of tooth-supporting tissues, compromising dental function and patient's health. Although the currently employed treatment approaches can limit the advance of the disease, the development of multifunctional and hierarchically structured materials is still in demand for achieving successful tissue regeneration. Here, we combine coaxial electrospinning and 3D printing techniques to prepare bilayered zein-based membranes as a potential dual drug delivery platform for periodontal tissue regeneration. A layer of core-sheath electrospun nanofibers consisting of poly(ethylene oxide) (PEO)/curcumin (Curc)/tetracycline hydrochloride (TH) as the core and zein/poly(ε-caprolactone)(PCL)/ß-glycerolphosphate (ß-GP) as the sheath was deposited over a 3D printed honeycomb PLA/zein/Curc platform in order to render a bilayered structure that can mimic the architecture of periodontal tissue. The physicochemical properties of engineered constructs as well as the release profiles of distinct drugs were mainly controlled by varying the concentration of zein (10, 20, 30%, w/w relative to dry PCL) on the sheath layer of nanofibers, which displayed average diameters ranging from 150 to 400 nm. In vitro experiments demonstrated that the bilayered constructs provided sustained release of distinct drugs over 8 days and exhibited biocompatibility toward human oral keratinocytes (Nok-si) (cell viability >80%) as well as antibacterial activity against distinct bacterial strains including those of the red complex such as Porphyromonas gingivalis and Treponema denticola, which are recognized to elicit aggressive and chronic periodontitis. Our study reveals the potential of zein-based bilayered membranes as a dual drug delivery platform for periodontal tissue regeneration.
Asunto(s)
Nanofibras , Periodontitis , Zeína , Sistemas de Liberación de Medicamentos , Humanos , Nanofibras/química , Periodontitis/tratamiento farmacológico , Impresión Tridimensional , Zeína/químicaRESUMEN
BACKGROUND: The present study investigated the mid-term effects of training muscle groups once- versus twice-daily on morphofunctional adaptations in trained men. METHODS: Participants were randomly assigned to 1 of 2 experimental groups: 1 daily session per muscle group (1S, N.=11), where every muscle group was trained once a day or 2 daily sessions per muscle group (2S, N.=12), where every muscle group was trained twice. Testing was conducted before intervention and after 8 weeks for maximal strength (1RM) and muscular endurance (60%1RM) for bench press and parallel back squat exercises, and muscle thickness (MT) of the biceps brachii, triceps brachii, vastus lateralis, anterior quadriceps and pectoralis major. RESULTS: The major findings were as follows: 1) the increase in 1RM back squat was significantly greater in 2S (∆=16.1%) compared to 1S (∆=7.8%) (P<0.05); 2) both groups significantly increased bench press 1RM (1S: ∆=4.6%; 2S: ∆=6.8%), back squat 60% 1RM (1S: ∆=19.0%; 2S: ∆=24.3%), bench press 60% 1RM (1S: ∆=15.4%; 2S: ∆=24.0%) and all MT outcomes (P<0.05 for all), with no differences between experimental groups (1S and 2S). CONCLUSIONS: This study provides evidence that a twice-daily resistance training augments lower-body muscular strength; however, the daily frequency does not seem to have any additive effect on upper-body muscular strength, muscular endurance, and muscle hypertrophy in trained men.
Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza , Adaptación Fisiológica , Humanos , Hipertrofia , Masculino , Músculo Esquelético , Músculo CuádricepsRESUMEN
Intelligent food packaging is usually designed to monitor the state of the food itself and/or the environment around it, as well as the interactions between them, providing customers with information on food quality and/or safety through a variety of signals. They involve indicators (which inform by direct visual changes about specific properties related to food quality) and sensors (which detect specific analytes by using receptors, transducers, and signal processing electronics). A third type of intelligent packaging is known as data carriers, which are not typically used for information on food quality, but rather to track the movement of food along the food supply chain. In this graphical review, the basic mechanisms of intelligent food packaging systems are presented, as well as their main applications, with particular emphasis on those focused on food quality monitoring.