Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 108(5-1): 054214, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115443

RESUMEN

The Madden-Julian oscillation (MJO) is a tropical weather system that has an important influence in the tropics and beyond; however, many of its characteristics are poorly understood, including their initiation and termination. Here we define Madden-Julian events as contiguous time periods with an active MJO, and we show that both the durations and the sizes of these events are well described by a double power-law distribution. Thus, small events have no characteristic scale, and the same for large events; nevertheless, both types of events are separated by a characteristic duration of about 27 days (this corresponds to half a cycle, roughly). Thus, after 27 days, there is a sharp increase in the probability that an event becomes extinct. We find that this effect is independent of the starting and ending phases of the events, which seems to point to an internal mechanism of exhaustion rather than to the effect of an external barrier. Our results would imply an important limitation of the MJO as a driver of subseasonal predictability.

2.
Phys Rev E ; 106(5-1): 054310, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559481

RESUMEN

Using demographic data of high spatial resolution for a region in the south of Europe, we study the population over fixed-size spatial cells. We find that, counterintuitively, the distribution of the number of inhabitants per cell increases its variability when the size of the cells is increased. Nevertheless, the shape of the distributions is kept constant, which allows us to introduce a scaling law, analogous to finite-size scaling, with a scaling function reasonably well fitted by a gamma distribution. This means that the distribution of the number of inhabitants per cell is stable or invariant under addition with neighboring cells (plus rescaling), defying the central-limit theorem, due to the obvious dependence of the random variables. The finite-size scaling implies a power-law relations between the moments of the distribution and its scale parameter, which are found to be related with the fractal properties of the spatial pattern formed by the population. The match between theoretical predictions and empirical results is reasonably good.

3.
Phys Rev E ; 105(6-1): 064122, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35854596

RESUMEN

Epidemics unfold by means of a spreading process from each infected individual to a variable number of secondary cases. It has been claimed that the so-called superspreading events of the COVID-19 pandemic are governed by a power-law-tailed distribution of secondary cases, with no finite variance. Using a continuous-time branching process, we demonstrate that for such power-law-tailed superspreading, the survival probability of an outbreak as a function of both time and the basic reproductive number fulfills a "finite-time scaling" law (analogous to finite-size scaling) with universal-like characteristics only dependent on the power-law exponent. This clearly shows how the phase transition separating a subcritical and a supercritical phase emerges in the infinite-time limit (analogous to the thermodynamic limit). We also quantify the counterintuitive hazards posed by this superspreading. When the expected number of infected individuals is computed removing extinct outbreaks, we find a constant value in the subcritical phase and a superlinear power-law growth in the critical phase.

4.
Sci Rep ; 12(1): 2615, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173194

RESUMEN

Zipf's law is a paradigm describing the importance of different elements in communication systems, especially in linguistics. Despite the complexity of the hierarchical structure of language, music has in some sense an even more complex structure, due to its multidimensional character (melody, harmony, rhythm, timbre, etc.). Thus, the relevance of Zipf's law in music is still an open question. Using discrete codewords representing harmonic content obtained from a large-scale analysis of classical composers, we show that a nearly universal Zipf-like law holds at a qualitative level. However, in an in-depth quantitative analysis, where we introduce the double power-law distribution as a new player in the classical debate between the superiority of Zipf's (power) law and that of the lognormal distribution, we conclude not only that universality does not hold, but also that there is not a unique probability distribution that best describes the usage of the different codewords by each composer.

5.
Phys Rev E ; 103(2-1): 022315, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33735972

RESUMEN

The final size reached by an epidemic, measured in terms of the total number of fatalities, is an extremely relevant quantity. It has been recently claimed that the size distribution of major epidemics in human history is "strongly fat-tailed," i.e., a power law asymptotically, which has important consequences for risk management. From the point of view of statistical physics and complex-systems modeling this is not an unexpected outcome, nevertheless, strong empirical evidence is also necessary to support such a claim. Reanalyzing previous data, we find that, although the fatality distribution may be compatible with a power-law tail, these results are not conclusive, and other distributions, not fat-tailed, could explain the data equally well. As an example, simulation of a log-normally distributed random variable provides synthetic data whose statistics are undistinguishable from the statistics of the empirical data. Theoretical reasons justifying a power-law tail as well as limitations in the current available data are also discussed.

6.
Phys Rev E ; 102(5-1): 052113, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327144

RESUMEN

In recent years, researchers have realized the difficulties of fitting power-law distributions properly. These difficulties are higher in Zipfian systems, due to the discreteness of the variables and to the existence of two representations for these systems, i.e., two versions depending on the random variable to fit: rank or size. The discreteness implies that a power law in one of the representations is not a power law in the other, and vice versa. We generate synthetic power laws in both representations and apply a state-of-the-art fitting method to each of the two random variables. The method (based on maximum likelihood plus a goodness-of-fit test) does not fit the whole distribution but the tail, understood as the part of a distribution above a cutoff that separates non-power-law behavior from power-law behavior. We find that, no matter which random variable is power-law distributed, using the rank as the random variable is problematic for fitting, in general (although it may work in some limit cases). One of the difficulties comes from recovering the "hidden" true ranks from the empirical ranks. On the contrary, the representation in terms of the distribution of sizes allows one to recover the true exponent (with some small bias when the underlying size distribution is a power law only asymptotically).

7.
Entropy (Basel) ; 22(2)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33285954

RESUMEN

The word-frequency distribution provides the fundamental building blocks that generate discourse in natural language. It is well known, from empirical evidence, that the word-frequency distribution of almost any text is described by Zipf's law, at least approximately. Following Stephens and Bialek (2010), we interpret the frequency of any word as arising from the interaction potentials between its constituent letters. Indeed, Jaynes' maximum-entropy principle, with the constrains given by every empirical two-letter marginal distribution, leads to a Boltzmann distribution for word probabilities, with an energy-like function given by the sum of the all-to-all pairwise (two-letter) potentials. The so-called improved iterative-scaling algorithm allows us finding the potentials from the empirical two-letter marginals. We considerably extend Stephens and Bialek's results, applying this formalism to words with length of up to six letters from the English subset of the recently created Standardized Project Gutenberg Corpus. We find that the model is able to reproduce Zipf's law, but with some limitations: the general Zipf's power-law regime is obtained, but the probability of individual words shows considerable scattering. In this way, a pure statistical-physics framework is used to describe the probabilities of words. As a by-product, we find that both the empirical two-letter marginal distributions and the interaction-potential distributions follow well-defined statistical laws.

8.
Entropy (Basel) ; 22(2)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33285998

RESUMEN

An important body of quantitative linguistics is constituted by a series of statistical laws about language usage. Despite the importance of these linguistic laws, some of them are poorly formulated, and, more importantly, there is no unified framework that encompasses all them. This paper presents a new perspective to establish a connection between different statistical linguistic laws. Characterizing each word type by two random variables-length (in number of characters) and absolute frequency-we show that the corresponding bivariate joint probability distribution shows a rich and precise phenomenology, with the type-length and the type-frequency distributions as its two marginals, and the conditional distribution of frequency at fixed length providing a clear formulation for the brevity-frequency phenomenon. The type-length distribution turns out to be well fitted by a gamma distribution (much better than with the previously proposed lognormal), and the conditional frequency distributions at fixed length display power-law-decay behavior with a fixed exponent α ≃ 1.4 and a characteristic-frequency crossover that scales as an inverse power δ ≃ 2.8 of length, which implies the fulfillment of a scaling law analogous to those found in the thermodynamics of critical phenomena. As a by-product, we find a possible model-free explanation for the origin of Zipf's law, which should arise as a mixture of conditional frequency distributions governed by the crossover length-dependent frequency.

9.
Phys Rev E ; 101(4-1): 042312, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422775

RESUMEN

Using population data of high spatial resolution for a region in the south of Europe, we define cities by aggregating individuals to form connected clusters. The resulting cluster-population distributions show a smooth decreasing behavior covering six orders of magnitude. We perform a detailed study of the distributions, using state-of-the-art statistical tools. By means of scaling analysis we rule out the existence of a power-law regime in the low-population range. The logarithmic-coefficient-of-variation test allows us to establish that the power-law tail for high population, characteristic of Zipf's law, has a rather limited range of applicability. Instead, lognormal fits describe the population distributions in a range covering from a few dozen individuals to more than 1×10^{6} (which corresponds to the population of the largest cluster).

10.
Sci Rep ; 10(1): 2901, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075986

RESUMEN

Coulomb-stress theory has been used for years in seismology to understand how earthquakes trigger each other. Whenever an earthquake occurs, the stress field changes, and places with positive increases are brought closer to failure. Earthquake models that relate earthquake rates and Coulomb stress after a main event, such as the rate-and-state model, assume that the magnitude distribution of earthquakes is not affected by the change in the Coulomb stress. By using different slip models, we calculate the change in Coulomb stress in the fault plane for every aftershock after the Landers event (California, USA, 1992, moment magnitude 7.3). Applying several statistical analyses to test whether the distribution of magnitudes is sensitive to the sign of the Coulomb-stress increase, we are not able to find any significant effect. Further, whereas the events with a positive increase of the stress are characterized by a much larger proportion of strike-slip events in comparison with the seismicity previous to the mainshock, the events happening despite a decrease in Coulomb stress show no relevant differences in focal-mechanism distribution with respect to previous seismicity.

11.
PLoS One ; 14(8): e0220237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31425542

RESUMEN

It is well accepted that, at the global scale, the Gutenberg-Richter (GR) law describing the distribution of earthquake magnitude or seismic moment has to be modified at the tail to properly account for the most extreme events. It is debated, though, how much additional time of earthquake recording will be necessary to properly constrain this tail. Using the global CMT catalog, we study how three modifications of the GR law that incorporate a corner-value parameter are compatible with the size of the largest observed earthquake in a given time window. Current data lead to a rather large range of parameter values (e.g., corner magnitude from 8.6 to 10.2 for the so-called tapered GR distribution). Updating this estimation in the future will strongly depend on the maximum magnitude observed, but, under reasonable assumptions, the range will be substantially reduced by the end of this century, contrary to claims in previous literature.


Asunto(s)
Terremotos/clasificación , Simulación por Computador , Terremotos/estadística & datos numéricos , Fenómenos Geológicos , Modelos Estadísticos , Factores de Tiempo
12.
Sci Rep ; 9(1): 2393, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787360

RESUMEN

Intense geomagnetic storms can cause severe damage to electrical systems and communications. This work proposes a counting process with Weibull inter-occurrence times in order to estimate the probability of extreme geomagnetic events. It is found that the scale parameter of the inter-occurrence time distribution grows exponentially with the absolute value of the intensity threshold defining the storm, whereas the shape parameter keeps rather constant. The model is able to forecast the probability of occurrence of an event for a given intensity threshold; in particular, the probability of occurrence on the next decade of an extreme event of a magnitude comparable or larger than the well-known Carrington event of 1859 is explored, and estimated to be between 0.46% and 1.88% (with a 95% confidence), a much lower value than those reported in the existing literature.

13.
Phys Rev E ; 100(6-1): 062106, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962489

RESUMEN

Power-law-type distributions are extensively found when studying the behavior of many complex systems. However, due to limitations in data acquisition, empirical datasets often only cover a narrow range of observation, making it difficult to establish power-law behavior unambiguously. In this work we present a statistical procedure to merge different datasets, with two different aims. First, we obtain a broader fitting range for the statistics of different experiments or observations of the same system. Second, we establish whether two or more different systems may belong to the same universality class. By means of maximum likelihood estimation, this methodology provides rigorous statistical information to discern whether power-law exponents characterizing different datasets can be considered equal among them or not. This procedure is applied to the Gutenberg-Richter law for earthquakes and for synthetic earthquakes (acoustic emission events) generated in the laboratory: labquakes. Different earthquake catalogs have been merged finding a Gutenberg-Richter law holding for more than eight orders of magnitude in seismic moment. The value of the exponent of the energy distribution of labquakes depends on the material used in the compression experiments. By means of the procedure proposed in this manuscript, we find that the Gutenberg-Richter law for earthquakes and charcoal labquakes can be characterized by the same power-law exponent, whereas Vycor labquakes exhibit a significantly different exponent.

14.
Nano Lett ; 19(1): 506-511, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30566839

RESUMEN

We report on the first measurement of the Seebeck coefficient in a tunnel-contacted and gate-tunable individual single-quantum dot junction in the Kondo regime, fabricated using the electromigration technique. This fundamental thermoelectric parameter is obtained by directly monitoring the magnitude of the voltage induced in response to a temperature difference across the junction, while keeping a zero net tunneling current through the device. In contrast to bulk materials and single molecules probed in a scanning tunneling microscopy (STM) configuration, investigating the thermopower in nanoscale electronic transistors benefits from the electric tunability to showcase prominent quantum effects. Here, striking sign changes of the Seebeck coefficient are induced by varying the temperature, depending on the spin configuration in the quantum dot. The comparison with numerical renormalization group (NRG) calculations demonstrates that the tunneling density of states is generically asymmetric around the Fermi level in the leads, both in the cotunneling and Kondo regimes.

15.
Sci Rep ; 8(1): 11783, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082921

RESUMEN

Finite-size scaling is a key tool in statistical physics, used to infer critical behavior in finite systems. Here we have made use of the analogous concept of finite-time scaling to describe the bifurcation diagram at finite times in discrete (deterministic) dynamical systems. We analytically derive finite-time scaling laws for two ubiquitous transitions given by the transcritical and the saddle-node bifurcation, obtaining exact expressions for the critical exponents and scaling functions. One of the scaling laws, corresponding to the distance of the dynamical variable to the attractor, turns out to be universal, in the sense that it holds for both bifurcations, yielding the same exponents and scaling function. Remarkably, the resulting scaling behavior in the transcritical bifurcation is precisely the same as the one in the (stochastic) Galton-Watson process. Our work establishes a new connection between thermodynamic phase transitions and bifurcations in low-dimensional dynamical systems, and opens new avenues to identify the nature of dynamical shifts in systems for which only short time series are available.

16.
Phys Rev E ; 97(6-1): 062156, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30011443

RESUMEN

We revisit the problem of Brownian diffusion with drift in order to study finite-size effects in the geometric Galton-Watson branching process. This is possible because of an exact mapping between one-dimensional random walks and geometric branching processes, known as the Harris walk. In this way, first-passage times of Brownian particles are equivalent to sizes of trees in the branching process (up to a factor of proportionality). Brownian particles that reach a distant reflecting boundary correspond to percolating trees, and those that do not correspond to nonpercolating trees. In fact, both systems display a second-order phase transition between "conducting" and "insulating" phases, controlled by the drift velocity in the Brownian system. In the limit of large system size, we obtain exact expressions for the Laplace transforms of the probability distributions and their first and second moments. These quantities are also shown to obey finite-size scaling laws.

17.
Phys Rev E ; 97(2-1): 022134, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29548208

RESUMEN

Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.

18.
Phys Rev E ; 96(2-1): 022318, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28950565

RESUMEN

Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016)PHYADX0378-437110.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

19.
Sci Rep ; 7: 40045, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28053311

RESUMEN

The distribution of seismic moment is of capital interest to evaluate earthquake hazard, in particular regarding the most extreme events. We make use of likelihood-ratio tests to compare the simple Gutenberg-Richter power-law (PL) distribution with two statistical models that incorporate an exponential tail, the so-called tapered Gutenberg-Richter (Tap) and the truncated gamma, when fitted to the global CMT earthquake catalog. Although the Tap distribution does not introduce any significant improvement of fit respect the PL, the truncated gamma does. Simulated samples of this distribution, with parameters ß = 0.68 and mc = 9.15 and reshuffled in order to mimic the time occurrence of the order statistics of the empirical data, are able to explain the temporal heterogeneity of global seismicity both before and after the great Sumatra-Andaman earthquake of 2004.

20.
Phys Rev E ; 94(3-1): 033005, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27739796

RESUMEN

Similarities between force-driven compression experiments of porous materials and earthquakes have been recently proposed. In this paper, we measure the acoustic emission during displacement-driven compression of a porous glass. The energy of acoustic-emission events shows that the failure process exhibits avalanche scale-invariance and therefore follows the Gutenberg-Richter law. The resulting exponents do not exhibit significant differences with respect the force-driven case. Furthermore, the force exhibits an avalanche-type behavior for which the force drops are power-law distributed and correlated with the acoustic emission events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA