Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 933: 172881, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38701922

RESUMEN

Wetlands play a disproportionate role in the global climate as major sources and sinks of greenhouse gases. Herbicides are the most heavily used agrochemicals and are frequently detected in aquatic ecosystems, with glyphosate and 2,4-Dichlorophenoxyacetic acid (2,4-D), representing the two most commonly used worldwide. In recent years, these herbicides are being used in mixtures to combat herbicide-tolerant noxious weeds. While it is well documented that herbicide use for agriculture is expected to increase, their indirect effects on wetland greenhouse gas dynamics are virtually unknown. To fill this knowledge gap, we conducted a factorial microcosm experiment using low, medium, and high concentrations of glyphosate or 2,4-D, individually and in combination to investigate their effects on wetland methane, carbon dioxide, and nitrous oxide fluxes. We predicted that mixed herbicide treatments would have a synergistic effect on greenhouse gases compared to individual herbicides. Our results showed that carbon dioxide flux rates and cumulative emissions significantly increased from both individual and mixed herbicide treatments, whereas methane and nitrous oxide dynamics were less affected. This study suggests that extensive use of glyphosate and 2,4-D may increase carbon dioxide emissions from wetlands, which could have implications for climate change.

2.
Microb Ecol ; 86(4): 2949-2958, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37674014

RESUMEN

Glyphosate is the most commonly used agricultural herbicide in the world. In aquatic ecosystems, glyphosate often adsorbs to benthic substrates or is metabolized and degraded by microorganisms. The effects of glyphosate on microbial communities vary widely as microorganisms respond differently to exposure. To help understand the impacts of glyphosate on the sediment microbiome, we conducted a microcosm experiment examining the responses of benthic sediment microbial communities to herbicide treatments. Sediments from a prairie pothole wetland were collected, and 16S rRNA gene sequencing was used to analyze community composition 2-h and 14-days after a single treatment of low (0.07 ppm), medium (0.7 ppm), or high (7 ppm) glyphosate, aminomethylphosphonic acid (glyphosate metabolite), or a glyphosate-based commercial formula. We found no significant differences in microbial community composition across treatments, concentration levels, or day of sampling. These findings suggest that microbial species in the Prairie Pothole Region of North America may be tolerant to glyphosate exposure.


Asunto(s)
Herbicidas , Microbiota , Contaminantes Químicos del Agua , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua/análisis , Herbicidas/farmacología , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA