RESUMEN
This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.
RESUMEN
In this work, a polymeric film was synthesized through a layer-by-layer (LBL) self-assembly technique using polyacrylic acid (PAA) and polyethylene oxide (PEO), resulting in the formation of a hydrogen-bonded LBL film. The formation of these films was evaluated by PMIRRAS and QCM-D. The synergy of these techniques allowed the understanding of the mechanism of formation of the film by showing the H-bonding formation and film growth. Au and Ag metal ions were successfully incorporated into the films, as corroborated by the combination of the information obtained by XRR and PMIRRAS. The films were exposed to increasing pH, showing a pronounced improvement in stability in films loaded with Au ions, extending the stability from pH 4 to 10. This behavior allows the use of this system in a wider range of applications, including the possibility of working in biological conditions. On the other hand, films loaded with Ag disintegrated at pH above 4. At acidic pH (below 3), these films released the Ag ions, which may be useful for the preparation of antibacterial stimuli-responsive nanomaterials. In both cases, the films were adequate to produce metal nanoparticles by metal loading and in situ reduction.
RESUMEN
The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 µA mM-1 cm-2.
Asunto(s)
Técnicas Biosensibles , Glucosa , Glucosa/metabolismo , Microfluídica , Polímeros/química , Peróxido de Hidrógeno , Glucosa Oxidasa/química , Oxidación-Reducción , Electrodos , Técnicas de Cultivo Tridimensional de Células , Técnicas Electroquímicas , Enzimas Inmovilizadas/químicaRESUMEN
Layer by layer assembly of polyelectrolytes with proteins is a convenient tool for the development of functional biomaterials. Most of the studies presented in the literature are based on the electrostatic interaction between components of opposite charges, limiting the assembly possibilities. However, this process can be tuned by modifying the environment where the main constituents are dissolved. In this work, the electron transfer behavior between an electroactive polyelectrolyte (polyallylamine derivatized with an osmium complex) and a redox enzyme (glucose oxidase) is studied by assembling them in the presence of phosphate ions at different ionic strengths. Our results show that the environment from which the assembly is constructed has a significant effect on the electrochemical response. Notably, the polyelectrolyte dissolved in the presence of phosphate at high ionic strength presents a globular structure which is preserved after adsorption with substantial effects on the buildup of the multilayer system, improving the electron transfer process through the film.