Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 378(2175): 20190397, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32564722

RESUMEN

The lattice Boltzmann method (LBM) is known to suffer from stability issues when the collision model relies on the BGK approximation, especially in the zero viscosity limit and for non-vanishing Mach numbers. To tackle this problem, two kinds of solutions were proposed in the literature. They consist in changing either the numerical discretization (finite-volume, finite-difference, spectral-element, etc.) of the discrete velocity Boltzmann equation (DVBE), or the collision model. In this work, the latter solution is investigated in detail. More precisely, we propose a comprehensive comparison of (static relaxation time based) collision models, in terms of stability, and with preliminary results on their accuracy, for the simulation of isothermal high-Reynolds number flows in the (weakly) compressible regime. It starts by investigating the possible impact of collision models on the macroscopic behaviour of stream-and-collide based D2Q9-LBMs, which clarifies the exact physical properties of collision models on LBMs. It is followed by extensive linear and numerical stability analyses, supplemented with an accuracy study based on the transport of vortical structures over long distances. In order to draw conclusions as generally as possible, the most common moment spaces (raw, central, Hermite, central Hermite and cumulant), as well as regularized approaches, are considered for the comparative studies. LBMs based on dynamic collision mechanisms (entropic collision, subgrid-scale models, explicit filtering, etc.) are also briefly discussed. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.

2.
Phys Rev E ; 99(6-1): 063305, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330723

RESUMEN

The lattice kinetic scheme (LKS), a modified version of the classical single relaxation time (SRT) lattice Boltzmann method, was initially developed as a suitable numerical approach for non-Newtonian flow simulations and a way to reduce memory consumption of the original SRT approach. The better performances observed for non-Newtonian flows are mainly due to the additional degree of freedom allowing an independent control over the relaxation of higher-order moments, independently from the fluid viscosity. Although widely applied to fluid flow simulations, no theoretical analysis of LKS has been performed. The present work focuses on a systematic von Neumann analysis of the linearized collision operator. Thanks to this analysis, the effects of the modified collision operator on the stability domain and spectral behavior of the scheme are clarified. Results obtained in this study show that correct choices of the "second relaxation coefficient" lead, to a certain extent, to a more consistent dispersion and dissipation for large values of the first relaxation coefficient. Furthermore, appropriate values of this parameter can lead to a larger linear stability domain. At moderate and low values of viscosity, larger values of the free parameter are observed to increase dissipation of kinetic modes, while leaving the acoustic modes untouched and having a less pronounced effect on the convective mode. This increased dissipation leads in general to less pronounced sources of nonlinear instability, thus improving the stability of the LKS.

3.
Phys Rev E ; 100(6-1): 063301, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962484

RESUMEN

Standard lattice Boltzmann methods (LBMs) are based on a symmetric discretization of the phase space, which amounts to study the evolution of particle distribution functions (PDFs) in a reference frame at rest. This choice induces a number of limitations when the simulated flow speed gets closer to the sound speed, such as velocity-dependent transport coefficients. The latter issue is usually referred to as a Galilean invariance defect. To restore the Galilean invariance of LBMs, it was proposed to study the evolution of PDFs in a comoving reference frame by relying on asymmetric shifted lattices [N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 117, 010604 (2016)].PRLTAO0031-900710.1103/PhysRevLett.117.010604 From the numerical viewpoint, this corresponds to overcoming the rather restrictive Courant-Friedrichs-Lewy conditions on standard LBMs and modeling compressible flows while keeping memory consumption and processing costs to a minimum (therefore using the standard first-neighbor stencils). In the present work systematic physical error evaluations and stability analyses are conducted for different discrete equilibrium distribution functions (EDFs) and collision models. Thanks to them, it is possible to (1) better understand the effect of this solution on both physics and stability, (2) assess its viability as a way to extend the validity range of LBMs, and (3) quantify the importance of the reference state as compared to other parameters such as the equilibrium state and equilibration path. The results clearly show that, in theory, the concept of shifted lattices allows the scheme to deal with arbitrarily high values of the nondimensional velocity. Furthermore, just like the zero-Mach flow for the standard stencils, it is observed that setting the shift velocity to the fluid velocity results in optimal physical and numerical properties. In addition, a detailed analysis of the obtained results shows that the properties of different collision models and EDFs remain unchanged under the shift of stencil. In other words, by introducing a velocity shift in the stencil, the optimal operating point, in terms of physics and numerics, will also be shifted by the same vector regardless of the EDF or collision model considered. Eventually, while limited to the D2Q9 stencil with the nine possible first-neighbor shifts, the present study and corresponding conclusions can be extended to other stencils and velocity shifts in a straightforward manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA