RESUMEN
The hake fishery plays a crucial role due to its significant economic impact. The genus Merluccius includes 12 extant species found along the coasts of the Americas, Europe, and Africa. However, research on their digestive physiology and the enzymes involved in digestion, including proteases, remains limited. Proteases play a key role in protein digestion, a vital process for all living organisms. This study focused on screening the genomes of eight Merluccius spp. for eight specific proteases previously identified in Merluccius polli. Additionally, the study conducted biochemical analyses of proteases found in the stomach and intestine of Pacific whiting fish (Merluccius productus), comparing the results with the genomic findings. The analysis revealed that proteases across Merluccius spp. are conserved, although with slight variations, particularly in chymotrypsin and aspartic proteases. Biochemical characterization of M. productus identified at least three main proteases in the stomach, active at acidic pH, and at least seven proteases in the intestine, active at alkaline pH, as determined by electrophoresis. Further investigation, including specific inhibition studies, determination of molecular mass, and assessment of pH and temperature preferences for catalysis, revealed that one of the stomach proteases functioning at acidic pH likely belongs to the acid peptidase class, likely pepsin. Similarly, analysis of proteases active at alkaline pH indicated the presence of a chymotrypsin and a trypsin, consistent with genomic findings in M. productus. These results are important as they provide insights into the digestive physiology of Merluccius spp., contributing to a better understanding of their nutritional needs.