RESUMEN
A string of fierce fires broke out in Chile in the austral summer 2023, just six years after the record-breaking 2017 fire season. Favored by extreme weather conditions, fire activity has dramatically risen in recent years in this Andean country. A total of 1.7 million ha. burned during the last decade, tripling figures of the prior decade. Six of the seven most destructive fire seasons on record occurred since 2014. Here, we analyze the progression during the last two decades of the weather conditions associated with increased fire risk in Central Chile (30°-39° S). Fire weather conditions (including high temperatures, low humidity, dryness, and strong winds) increase the potential for wildfires, once ignited, to rapidly spread. We show that the concurrence of El Niño and climate-fueled droughts and heatwaves boost the local fire risk and have decisively contributed to the intense fire activity recently seen in Central Chile. Our results also suggest that the tropical eastern Pacific Ocean variability modulates the seasonal fire weather in the country, driving in turn the interannual fire activity. The signature of the warm anomalies in the Niño 1 + 2 region (0°-10° S, 90° W-80° W) is apparent on the burned area records seen in Central Chile in 2017 and 2023.
RESUMEN
The angular distribution of the sky radiance determines the energy generation of solar power technologies as well as the ultraviolet (UV) doses delivered to the biosphere. The sky-diffuse radiance distribution depends on the wavelength, the solar elevation, and the atmospheric conditions. Here, we report on ground-based measurements of the all-sky radiance at three sites in the Southern Hemisphere across a transect of about 5,000 km: Santiago (33°S, a mid-latitude city of 6 million inhabitants with endemic poor air quality), King George Island (62°S, at the northern tip of the Antarctic Peninsula, one of the cloudiest regions on Earth), and Union Glacier (79°S, a snow-covered glacier in the vast interior of Western Antarctica). The sites were strategically selected for studying the influence of urban aerosols, frequent and thick clouds, and extremely high albedo on the sky-diffuse radiance distribution. Our results show that, due to changing site-specific atmospheric conditions, the characterization of the weather-driven sky radiance distribution may require ground-based measurements.
Asunto(s)
Clima , Tiempo (Meteorología) , Nieve , Regiones Antárticas , Planeta TierraRESUMEN
Cities in the global south face dire climate impacts. It is in socioeconomically marginalized urban communities of the global south that the effects of climate change are felt most deeply. Santiago de Chile, a major mid-latitude Andean city of 7.7 million inhabitants, is already undergoing the so-called "climate penalty" as rising temperatures worsen the effects of endemic ground-level ozone pollution. As many cities in the global south, Santiago is highly segregated along socioeconomic lines, which offers an opportunity for studying the effects of concurrent heatwaves and ozone episodes on distinct zones of affluence and deprivation. Here, we combine existing datasets of social indicators and climate-sensitive health risks with weather and air quality observations to study the response to compound heat-ozone extremes of different socioeconomic strata. Attributable to spatial variations in the ground-level ozone burden (heavier for wealthy communities), we found that the mortality response to extreme heat (and the associated further ozone pollution) is stronger in affluent dwellers, regardless of comorbidities and lack of access to health care affecting disadvantaged population. These unexpected findings underline the need of a site-specific hazard assessment and a community-based risk management.
RESUMEN
Black carbon (BC) from fossil fuel and biomass combustion darkens the snow and makes it melt sooner. The BC footprint of research activities and tourism in Antarctica has likely increased as human presence in the continent has surged in recent decades. Here, we report on measurements of the BC concentration in snow samples from 28 sites across a transect of about 2,000 km from the northern tip of Antarctica (62°S) to the southern Ellsworth Mountains (79°S). Our surveys show that BC content in snow surrounding research facilities and popular shore tourist-landing sites is considerably above background levels measured elsewhere in the continent. The resulting radiative forcing is accelerating snow melting and shrinking the snowpack on BC-impacted areas on the Antarctic Peninsula and associated archipelagos by up to 23 mm water equivalent (w.e.) every summer.
Asunto(s)
Huella de Carbono , Monitoreo del Ambiente , Regiones Antárticas , Carbono/análisis , Humanos , Nieve , Hollín/análisisRESUMEN
Attributable to the Montreal Protocol, the most successful environmental treaty ever, human-made ozone-depleting substances are declining and the stratospheric Antarctic ozone layer is recovering. However, the Antarctic ozone hole continues to occur every year, with the severity of ozone loss strongly modulated by meteorological conditions. In late November and early December 2020, we measured at the northern tip of the Antarctic Peninsula the highest ultraviolet (UV) irradiances recorded in the Antarctic continent in more than two decades. On Dec. 2nd, the noon-time UV index on King George Island peaked at 14.3, very close to the largest UV index ever recorded in the continent. On Dec. 3rd, the erythemal daily dose at the same site was among the highest on Earth, only comparable to those recorded at high altitude sites in the Atacama Desert, near the Tropic of Capricorn. Here we show that, despite the Antarctic ozone recovery observed in early spring, the conditions that favor these extreme surface UV events persist in late spring, when the biologically effective UV radiation is more consequential. These conditions include long-lasting ozone holes (attributable to the polar vortex dynamics) that often bring ozone-depleted air over the Antarctic Peninsula in late spring. The fact that these conditions have been occurring at about the same frequency during the last two decades explains the persistence of extreme surface UV events in Antarctica.
RESUMEN
Surface albedo is an important forcing parameter that drives the radiative energy budget as it determines the fraction of the downwelling solar irradiance that the surface reflects. Here we report on ground-based measurements of the spectral albedo (350-2200 nm) carried out at 20 sites across a North-South transect of approximately 1300 km in the Atacama Desert, from latitude 18° S to latitude 30° S. These spectral measurements were used to evaluate remote sensing estimates of the albedo derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). We found that the relative mean bias error (RMBE) of MODIS-derived estimates was within ± 5% of ground-based measurements in most of the Atacama Desert (18-27° S). Although the correlation between MODIS-derived estimates and ground-based measurements remained relatively high (R= 0.94), RMBE values were slightly larger in the southernmost part of the desert (27-30° S). Both MODIS-derived data and ground-based measurements show that the albedo at some bright spots in the Atacama Desert may be high enough (up to 0.25 in visible range) for considerably boosting the performance of bifacial photovoltaic technologies (6-12%).
RESUMEN
The chemical composition of snow provides insights on atmospheric transport of anthropogenic contaminants at different spatial scales. In this study, we assess how human activities influence the concentration of elements in the Andean mountain snow along a latitudinal transect throughout Chile. The concentration of seven elements (Al, Cu, Fe, Li, Mg, Mn and Zn) was associated to gaseous and particulate contaminants emitted at different spatial scales. Our results indicate carbon monoxide (CO) averaged at 20 km and nitrogen oxide (NOx) at 40 km as the main indicators of the chemical elements analyzed. CO was found to be a significant predictor of most element concentrations while concentrations of Cu, Mn, Mg and Zn were positively associated to emissions of NOx. Emission of 2.5 µm and 10 µm particulate matter averaged at different spatial scales was positively associated to concentration of Li. Finally, the concentration of Zn was positively associated to volatile organic compounds (VOC) averaged at 40 km around sampling sites. The association between air contaminants and chemical composition of snow suggests that regions with intensive anthropogenic pollution face reduced quality of freshwater originated from glacier and snow melting.
RESUMEN
Retinoblastoma is the most frequent ocular malignancy in the pediatric population and intra-arterial chemotherapy has emerged as the first-line treatment of this entity with cure rates ranging from 33-100%, depending on the severity of the disease. We present the case of an advanced retinoblastoma in a pediatric patient who underwent intra-arterial chemotherapy through a contralateral route due to unsuccessful catheterization of the ophthalmic artery. The patient was diagnosed with a class D retinoblastoma which underwent the catheterization of the ophthalmic artery through the contralateral internal carotid and through the anterior communicating artery. In this case, intra-arterial chemotherapy administration was successfully delivered without complications. Contralateral routes for intra-arterial chemotherapy are safe and allow adequate penetration of the chemotherapeutic drugs in cases where a well-developed anterior communicating artery is present.
Asunto(s)
Antineoplásicos , Neoplasias de la Retina , Retinoblastoma , Antineoplásicos/uso terapéutico , Cateterismo , Niño , Humanos , Lactante , Arteria Oftálmica/diagnóstico por imagen , Neoplasias de la Retina/diagnóstico por imagen , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/diagnóstico por imagen , Retinoblastoma/tratamiento farmacológico , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
Predicting radiative forcing due to Antarctic stratospheric ozone recovery requires detecting changes in the ozone vertical distribution. In this endeavor, the Limb Profiler of the Ozone Mapping and Profiler Suite (OMPS-LP), aboard the Suomi NPP satellite, has played a key role providing ozone profiles over Antarctica since 2011. Here, we compare ozone profiles derived from OMPS-LP data (version 2.5 algorithm) with balloon-borne ozonesondes launched from 8 Antarctic stations over the period 2012-2020. Comparisons focus on the layer from 12.5 to 27.5 km and include ozone profiles retrieved during the Sudden Stratospheric Warming (SSW) event registered in Spring 2019. We found that, over the period December-January-February-March, the root mean square error (RMSE) tends to be larger (about 20%) in the lower stratosphere (12.5-17.5 km) and smaller (about 10%) within higher layers (17.5-27.5 km). During the ozone hole season (September-October-November), RMSE values rise up to 40% within the layer from 12.5 to 22 km. Nevertheless, relative to balloon-borne measurements, the mean bias error of OMPS-derived Antarctic ozone profiles is generally lower than 0.3 ppmv, regardless of the season.
RESUMEN
The Andean snowpack is the primary source of water for many communities in South America. We have used Landsat imagery over the period 1986-2018 in order to assess the changes in the snow cover extent across a north-south transect of approximately 2,500 km (18°-40°S). Despite the significant interannual variability, here we show that the dry-season snow cover extent declined across the entire study area at an average rate of about -12% per decade. We also show that this decreasing trend is mainly driven by changes in the El Niño Southern Oscillation (ENSO), especially at latitudes lower than 34°S. At higher latitudes (34°-40°S), where the El Niño signal is weaker, snow cover losses appear to be also influenced by the poleward migration of the westerly winds associated with the positive trend in the Southern Annular Mode (SAM).
RESUMEN
The snowpack is an important source of water for many Andean communities. Because of its importance, elemental and mineralogical composition analysis of the Andean snow is a worthwhile effort. In this study, we conducted a chemical composition analysis (major and trace elements, mineralogy, and chemical enrichment) of surface snow sampled at 21 sites across a transect of about 2,500 km in the Chilean Andes (18-41°S). Our results enabled us to identify five depositional environments: (i) sites 1-3 (in the Atacama Desert, 18-26°S) with relatively high concentrations of metals, high abundance of quartz and low presence of arsenates, (ii) sites 4-8 (in northern Chile, 29-32°S) with relatively high abundance of quartz and low presence of metals and arsenates, (iii) sites 9-12 (in central Chile, 33-35°S) with anthropogenic enrichment of metals, relatively high values of quartz and low abundance of arsenates, (iv) sites 13-14 (also in central Chile, 35-37°S) with relatively high values of quartz and low presence of metals and arsenates, and v) sites 15-21 (in southern Chile, 37-41°S) with relatively high abundance of arsenates and low presence of metals and quartz. We found significant anthropogenic enrichment at sites close to Santiago (a major city of 6 million inhabitants) and in the Atacama Desert (that hosts several major copper mines).
RESUMEN
Vertical profiles of black carbon (BC) and other light-absorbing impurities were measured in seasonal snow and permanent snowfields in the Chilean Andes during Austral winters 2015 and 2016, at 22 sites between latitudes 18°S and 41°S. The samples were analyzed for spectrally-resolved visible light absorption. For surface snow, the average mass mixing ratio of BC was 15 ng/g in northern Chile (18-33°S), 28 ng/g near Santiago (a major city near latitude 33°S, where urban pollution plays a significant role), and 13 ng/g in southern Chile (33-41°S). The regional average vertically-integrated loading of BC was 207 µg/m2 in the north, 780 µg/m2 near Santiago, and 2500 µg/m2 in the south, where the snow season was longer and the snow was deeper. For samples collected at locations where there had been no new snowfall for a week or more, the BC concentration in surface snow was high (~10-100 ng/g) and the sub-surface snow was comparatively clean, indicating the dominance of dry deposition of BC. Mean albedo reductions due to light-absorbing impurities were 0.0150, 0.0160, and 0.0077 for snow grain radii of 100 µm for northern Chile, the region near Santiago, and southern Chile; respective mean radiative forcings for the winter months were 2.8, 1.4, and 0.6 W/m2. In northern Chile, our measurements indicate that light-absorption by impurities in snow was dominated by dust rather than BC.
RESUMEN
We report on the first spectral measurements of ultraviolet (UV) irradiance and the albedo at a Camp located in the southern Ellsworth Mountains on the broad expanse of Union Glacier (700 m altitude, 79° 46' S; 82° 52'W); about 1,000 km from the South Pole. The measurements were carried out by using a double monochromator-based spectroradiometer during a campaign (in December 2012) meant to weight up the effect of the local albedo on the UV irradiance. We found that the albedo measured at noon was about 0.95 in the UV and the visible part of the spectrum. This high surface reflectivity led to enhancements in the UV index under cloudless conditions of about 50% in comparison with snow free surfaces. Spectral measurements carried out elsewhere as well as estimates retrieved from the Ozone Monitoring Instrument (OMI) were used for further comparisons.
Asunto(s)
Fenómenos Geológicos , Cubierta de Hielo , Rayos Ultravioleta , Regiones Antárticas , Ozono , Comunicaciones por Satélite , Análisis Espectral , Factores de TiempoRESUMEN
Chile's northern Atacama Desert has been pointed out as one of the places on earth where the world's highest surface ultraviolet (UV) may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low total ozone column. Aimed at detecting those peak UV levels, we carried out in January 2013 ground-based spectral measurements on the Chajnantor Plateau (5100 m altitude, 23°00'S, 67°45'W) and at the Paranal Observatory (2635 m altitude, 24°37'S, 70°24'W). The UV index computed from our spectral measurements peaked at 20 on the Chajnantor Plateau (under broken cloud conditions) and at 16 at the Paranal Observatory (under cloudless conditions). Spectral measurements carried out in June 2005 at the Izaña Observatory (2367 m altitude, 28°18'N, 16°30'W) were used for further comparisons. Due to the differences in sun-earth separation, total ozone column, altitude, albedo, aerosols and clouds, peak UV levels are expected to be significantly higher at southern hemisphere sites than at their northern hemisphere counterparts.
Asunto(s)
Ozono/química , Dosis de Radiación , Rayos Ultravioleta , Altitud , Chile , Humanos , Radiometría , Estaciones del Año , Luz SolarRESUMEN
We report on the surface UV index (UVI) variations in Santiago (Chile) a city with high air pollution and complex surrounding topography. Ground-based UV measurements were continuously carried out between January 1995 and December 2011, by using a multi-channel filter radiometer (PUV-510). Ground-based measurements and satellite-derived data retrieved from the Total Ozone Mapping Spectrometer (TOMS), the Ozone Monitoring Instrument (OMI), and the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), were compared. We found that satellite-derived UVI products largely overestimate surface UVI. Our ground-based UVI measurements were significantly lower than TOMS-derived UVI data: (46.1±6.3)% (in the period 1997-2003), and OMI-derived UVI data: (47.0±6.3)% (in the period 2005-2007). Clear-sky SCIAMACHY-derived UVI were found to be also nearly systematically greater than ground-based UVI measurements in the period 2002-2011. An exceptionally long period of clear skies between December 2010 and January 2011 was used to test further satellite-derived UVI data; in the whole period, OMI and SCIAMACHY data were 53.1% and 38.3% greater than our ground-based measurements, respectively. These differences are presumably due to aerosol load associated with the local pollution and the complex topography surrounding Santiago. In addition, linear regression allowed us to estimate trends that we use for forecasting. Methodological details are provided below.
Asunto(s)
Monitoreo de Radiación/métodos , Monitoreo de Radiación/estadística & datos numéricos , Nave Espacial , Rayos Ultravioleta , Contaminación Radiactiva del Aire/estadística & datos numéricos , Chile , Predicción , Control de CalidadRESUMEN
Displacement measurements by optical interferometry depend on the induced phase difference and on the interferometer's sensitivity vector; the latter depends in turn on the illuminating sources and on the geometry of the optical arrangement. We have performed an uncertainty analysis of the in-plane displacements measured by electronic speckle-pattern interferometry with spherical incident wave fronts. We induced the displacements by applying a uniaxial tensile load on a nominally flat elastic sample. We approached the displacement uncertainty by propagating the uncertainties that we considered reasonable to assign to the measured phase difference and to the characteristic parameters of the interferometer's sensitivity vector. Special attention was paid to evaluating contributions to the displacement uncertainty. Moreover, we observed that the uncertainty decreases if the angles of incidence and the source-target distances are increased.
RESUMEN
Los objetivos de este trabajo tipo cohorte retrospectivo, son establecer la relación entre el perfil hematológico al momento del diagnóstico y los hallazgos del examen oftalmológicos en pacientes menores de 15 años con leucemia linfática aguda (LLA), evaluar factores de riesgo y determinar el pronóstico del compromiso ocular. Se evaluaron oftalmológicamente 120 pacientes menores de 15 años con LLA en el INEN, entre enero de 1991 y noviembre de 1993. El 53 por ciento eran de sexo masculino y la edad promedio fue de 77 meses. El 33 por ciento (40/120) presentó compromiso ocular. El 24 por ciento (29/120) presentó compromiso retinal. Se encontró asociación estadística entre compromiso retinal y edad mayor de 65 meses, leucocitos mayor de 100000 xmm3. No se encontró asociación con el resto de las variables. El pronóstico de las alteraciones oculares es excelente
Asunto(s)
Humanos , Niño , Adolescente , Masculino , Femenino , Anomalías del Ojo/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicacionesRESUMEN
Se realizaron 29 extracciones extracapsulares de catarata con implante primario de lente intraocular. El 62 por ciento de los pacientes obtuvieron una agudeza visual de 20/40 o mejor. Las medidas correctivas para medir el astigmatismo post-operatorio fueron efectivas en el 79 por ciento de los casos, de 2 dioptriass o menos. El implante de lente intraocular primario le brinda al paciente con catarata una recuperación visual satisfactoria, mejor que la que se obtiene con la corrección óptica convencional. La corrección astigmática post-operatoria reduce considerablemente el astigmatismo post-operatorio