Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 64(2): 160-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24654385

RESUMEN

In an effort to decrease the land disposal of sewage sludge biosolids and to recover energy, gasification has become a viable option for the treatment of waste biosolids. The process of gasification involves the drying and devolatilization and partial oxidation of biosolids, followed closely by the reduction of the organic gases and char in a single vessel. The products of gasification include a gaseous fuel composed largely of N2, H2O, CO2, CO, H2, CH4, and tars, as well as ash and unburned solid carbon. A mathematical model was developed using published devolatilization, oxidation, and reduction reactions, and calibrated using data from three different experimental studies of laboratory-scale fluidized-bed sewage sludge gasifiers reported in the literature. The model predicts syngas production rate, composition, and temperature as functions of the biosolids composition and feed rate, the air input rate, and gasifier bottom temperature. Several data sets from the three independent literature sources were reserved for model validation, with a focus placed on five species of interest (CO, CO2, H2, CH4, and C6H6). The syngas composition predictions from the model compared well with experimental results from the literature. A sensitivity analysis on the most important operating parameters of a gasifier (bed temperature and equivalence ratio) was performed as well, with the results of the analysis offering insight into the operations of a biosolids gasifier.


Asunto(s)
Biocombustibles , Modelos Químicos , Administración de Residuos
3.
J Air Waste Manag Assoc ; 63(7): 819-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23926851

RESUMEN

UNLABELLED: The Intergovernmental Panel on Climate Change (IPCC) estimates that baseline global GHG emissions may increase 25-90% from 2000 to 2030, with carbon dioxide (CO2 emissions growing 40-110% over the same period. On-road vehicles are a major source of CO2 emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, for example, carbon monoxide (CO), nitrogen oxides (NO(x)), and particulate matter (PM). Therefore, the need to accurately quantify transportation-related emissions from vehicles is essential. The new US. Environmental Protection Agency (EPA) mobile source emissions model, MOVES2010a (MOVES), can estimate vehicle emissions on a second-by-second basis, creating the opportunity to combine a microscopic traffic simulation model (such as VISSIM) with MOVES to obtain accurate results. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, FL. First (at the most basic level), emissions were estimated for the entire 10-mile section "by hand" using one average traffic volume and average speed. Then three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NO(x), PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach. IMPLICATIONS: Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Modelos Teóricos , Emisiones de Vehículos/análisis , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Ciudades , Florida , Óxidos de Nitrógeno/análisis , Factores de Tiempo
4.
J Air Waste Manag Assoc ; 63(6): 724-36, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23858998

RESUMEN

Near-road dispersion modeling with CAL3QHC has traditionally been accomplished by assuming vehicles are either idling in queue links or flowing freely in cruise links. With the introduction of the new mobile-source emissions model MOVES, second-by-second activity patterns can be used to produce emission factors (EFs) that vary by vehicular modal activity, that is, acceleration, deceleration, idle, and cruise. By using these EFs in unique modal links in CAL3QHC input files, the predicted concentration of pollutants near roadways can be modeled with greater precision in regard to real-world intersection vehicle behavior. It is noted that this work does not include any comparisons with real-world monitored data, and thus only the precision and not the accuracy of the proposed method is addressed. This work poses the question of how best to include modal links into near-road dispersion modeling. Specifically, it examines dividing acceleration and deceleration segments into multiple sublinks for greater resolution. It is shown that such an approach can produce much higher CO predictions at an intersection (up to 400% higher) compared with the current cruise-and-idle-links modeling approach. A method of dividing links by increments of speed change is suggested. The method relies upon obtaining EFs from standstill to various cruise speeds (or from cruise speed to stopped) and using those results to obtain position-specific acceleration (or deceleration) EFs needed for dispersion modeling inputs. Acceleration EFs (in g/mile) are an order of magnitude larger than cruise EFs; deceleration EFs are smaller than cruise EFs. The number of sublinks used to model one acceleration link makes a difference in the predicted concentrations. MOVES can produce erratic EFs when longer links are broken into smaller sublinks.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Algoritmos , Emisiones de Vehículos/análisis , Aceleración , Contaminantes Atmosféricos/análisis , Monóxido de Carbono/análisis , Modelos Estadísticos , Vehículos a Motor
5.
J Air Waste Manag Assoc ; 62(9): 1050-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23019819

RESUMEN

UNLABELLED: A mobile source carbon dioxide (CO2) emissions inventory for the University of Central Florida (UCF) has been completed. Fora large urban university, more than 50% of the CO2 emissions can come from mobile sources, and the vast majority of mobile source emissions come from on-road sources: personal vehicles and campus shuttles carrying students, faculty, staff and administrators to and from the university as well as on university business trips. In addition to emissions from on-road vehicles, emissions from airplane-based business travel are significant, along with emissions from nonroad equipment such as lawnmowers, leaf blowers, and small maintenance vehicles utilized on campus. UCF has recently become one of the largest universities in the nation (with over 58,000 students enrolled in the fall 2011 semester) and emits a substantial amount of CO2 in the Central Florida area. For this inventory, students, faculty, staff and administrators were first surveyed to determine their commuting distances and frequencies. Information was also gathered on vehicle type and age distribution of the personal vehicles of students, faculty, administrators, and staff as well as their bus, car-pool, and alternate transportation usage. The latest US. Environmental Protection Agency (EPA)-approved mobile source emissions model, Motor Vehicle Emissions Simulator (MOVES2010a), was used to calculate the emissions from on-road vehicles, and UCF fleet gasoline consumption records were used to calculate the emissions from nonroad equipment and from on-campus UCF fleet vehicles. The results of this UCF mobile source emissions inventory were compared with those for another large U.S. university. IMPLICATIONS: With the growing awareness of global climate change, a number of colleges/universities and other organizations are completing greenhouse gas emission inventories. Assumptions often are made in order to calculate mobile source emissions, but without field data or valid reasoning, the accuracy of those assumptions may be questioned. This paper presents a method that involves a survey, the use of the MOVES model, and emission factors to produce a mobile source emissions inventory. The results show that UCF mobile source CO2 emissions are larger than most other universities, and make up about 2% of all the mobile source emissions in Orange County, Florida.


Asunto(s)
Dióxido de Carbono/análisis , Universidades/estadística & datos numéricos , Emisiones de Vehículos/análisis , Algoritmos , Florida , Humanos
6.
J Air Waste Manag Assoc ; 59(8): 925-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19728486

RESUMEN

Because municipal solid waste (MSW) landfills emit significant amounts of methane, a potent greenhouse gas, there is considerable interest in quantifying surficial methane emissions from landfills. The authors present a method to estimate methane emissions, using ambient air volatile organic compound (VOC) measurements taken above the surface of the landfill. Using a hand-held monitor, hundreds of VOC concentrations can be taken easily in a day, and simple meteorological data can be recorded at the same time. The standard Gaussian dispersion equations are inverted and solved by matrix methods to determine the methane emission rates at hundreds of point locations throughout a MSW landfill. These point emission rates are then summed to give the total landfill emission rate. This method is tested on a central Florida MSW landfill using data from 3 different days, taken 6 and 12 months apart. A sensitivity study is conducted, and the emission estimates are most sensitive to the input meteorological parameters of wind speed and stability class. Because of the many measurements that are used, the results are robust. When the emission estimates were used as inputs into a dispersion model, a reasonable scatterplot fit of the individual concentration measurement data resulted.


Asunto(s)
Monitoreo del Ambiente/métodos , Metano/análisis , Administración de Residuos , Florida , Modelos Teóricos , Compuestos Orgánicos Volátiles/análisis , Viento
7.
Waste Manag ; 27(2): 220-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16540305

RESUMEN

Hydrogen sulfide (H2S) has been identified as a principal odorous component of gaseous emissions from construction and demolition debris (C&D) landfills. Although several studies have reported the ambient concentrations of H2S near C&D landfills, few studies have quantified emission rates of H2S. One of the most widely used techniques for measuring surface gas emission rates from landfills is the flux chamber method. Flux measurements using the flux chamber were performed at five different C&D landfills from April to August, 2003. The flux rates of H2S measured in this research were between 0.192 and 1.76 mg/(m2-d).


Asunto(s)
Monitoreo del Ambiente , Sulfuro de Hidrógeno , Administración de Residuos , Residuos/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis
8.
J Air Waste Manag Assoc ; 54(8): 1006-10, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15373368

RESUMEN

In many urban areas, on-road vehicles are the biggest contributing source category of volatile organic compounds (VOCs) and nitrogen oxides (NOx). Based on a recently completed emission inventory study for three counties in central Florida, the major source by far of anthropogenic VOCs and NOx was on-road mobile sources, even though other sources (such as construction equipment, lawn and garden equipment, and various point sources) were also significant. Although there is specific guidance for conducting an ozone-season inventory for mobile sources, there is a lack of detailed guidance as to how to employ the U.S. Environmental Protection Agency's (EPA) latest mobile source emission factor program, MOBILE6, for an annual inventory. Several of the MOBILE6 inputs that significantly influence emission factors (e.g., temperature) can vary widely throughout the year, and the annual average value may not be appropriate. Rather, it may be better to utilize monthly values of these parameters. This paper investigated the sensitivity of the annual emission inventory results to using annual or monthly values of temperature, Reid Vapor Pressure of gasoline, and humidity. The results show that, for a three-county area in central Florida representing metropolitan Orlando, the annual emission inventory based on the sum of individual monthly averages is not significantly different from that calculated using one set of annual average inputs to MOBILE6.


Asunto(s)
Contaminantes Atmosféricos/análisis , Modelos Teóricos , Emisiones de Vehículos/análisis , Conducción de Automóvil , Ciudades , Recolección de Datos , Florida , Reproducibilidad de los Resultados
9.
J Air Waste Manag Assoc ; 49(4): 471-476, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28060650

RESUMEN

A new equation is proposed to predict the lower heating value of hazardous and non-hazardous materials. The equation was developed by a statistical correlation of heating value and composition data for a variety of materials as reported in a number of sources. The model takes into account the carbon, hydrogen, oxygen, chlorine, and sulfur content of the material being combusted.

10.
J Air Waste Manag Assoc ; 48(3): 238-246, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29091546

RESUMEN

Research at the University of Central Florida has determined that the injection of hydrogen peroxide (H2O2) into a simulated flue gas stream effectively oxidizes NO to NO2, and NO2 to HNO2 and HNO3. These oxides of nitrogen are much more soluble in water than NO, and therefore may be more easily scrubbed from the flue gas in a typical wet scrubber. Oxidation and NOx removal efficiencies of greater than 90% were demonstrated in the laboratory. An economic comparison between the H2O2 injection-wet scrubbing method and the selective catalytic reduction (SCR) method of NOx removal was conducted for a design base case and a variety of alternative cases. This study illustrates the trade-off between capital and operating costs for the two alternatives. The single largest factor in determining whether the total cost of the H2O2 injection-wet scrubbing method compares favorably with the total cost of the SCR method is the H2O2:NOx molar ratio. At the H2O2:NOx molar ratio demonstrated in the laboratory (1.92:1.0), the H2O2 injection-wet scrubbing method of NOx removal was shown to be uneconomical. However, the molar ratio in a full-size coal-fired power plant could be lower than that found in the laboratory. Based on all the cost assumptions stated in this article, at a molar ratio of 1.37:1.0, the hydrogen peroxide injection method was calculated to be an economically feasible alternative to the SCR method for NOx control.

11.
J Air Waste Manag Assoc ; 46(2): 127-133, 1996 02.
Artículo en Inglés | MEDLINE | ID: mdl-28081413

RESUMEN

Nitrogen oxides (NOX) and sulfur oxides (SOX) are criteria air pollutants, emitted in large quantities from fossil-fueled electric power plants. Emissions of SOX are currently being reduced significantly in many places by wet scrubbing of the exhaust or flue gases, but most of the NOX in the flue gases is NO, which is so insoluble that it is virtually impossible to scrub. Consequently, NOX control is mostly achieved by using combustion modifications to limit the formation of NOX, or by using chemical reduction techniques to reduce NOX to N2. Low NOX burners are relatively inexpensive but can only achieve about 50% reduction in NOX emissions; selective catalytic reduction (SCR) can achieve high reductions but is very expensive. The removal of NOX in wet scrubbers could be greatly enhanced by gas-phase oxidation of the NO to NO2, HNO2, and HNO3 (the acid gases are much more soluble in water than NO). This oxidation is accomplished by injecting liquid hydrogen peroxide into the flue gas; the H2O2 vaporizes and dissociates into hydroxyl radicals. The active OH radicals then oxidize the NO and NO2. This NOX control technique might prove economically feasible at power plants with existing SO2 scrubbers. The higher chemical costs for H2O2 would be balanced by the investment cost savings, compared with an alternative such as SCR. The oxidation of NOX by using hydrogen peroxide has been demonstrated in a laboratory quartz tube reactor. NO conversions of 97% and 75% were achieved at hydrogen peroxide/NO mole ratios of 2.6 and 1.6, respectively. The reactor conditions (500 °C, a pressure of one atmosphere, and 0.7 seconds residence time) are representative of flue gas conditions for a variety of combustion sources. The oxidized NOX species were removed by caustic water scrubbing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA