RESUMEN
Understanding and predicting others' actions in ecological settings is an important research goal in social neuroscience. Here, we deployed a mobile brain-body imaging (MoBI) methodology to analyze inter-brain communication between professional musicians during a live jazz performance. Specifically, bispectral analysis was conducted to assess the synchronization of scalp electroencephalographic (EEG) signals from three expert musicians during a three-part 45 minute jazz performance, during which a new musician joined every five minutes. The bispectrum was estimated for all musician dyads, electrode combinations, and five frequency bands. The results showed higher bispectrum in the beta and gamma frequency bands (13-50 Hz) when more musicians performed together, and when they played a musical phrase synchronously. Positive bispectrum amplitude changes were found approximately three seconds prior to the identified synchronized performance events suggesting preparatory cortical activity predictive of concerted behavioral action. Moreover, a higher amount of synchronized EEG activity, across electrode regions, was observed as more musicians performed, with inter-brain synchronization between the temporal, parietal, and occipital regions the most frequent. Increased synchrony between the musicians' brain activity reflects shared multi-sensory processing and movement intention in a musical improvisation task.
Asunto(s)
Música , Encéfalo , Mapeo Encefálico/métodos , Electroencefalografía , ComunicaciónRESUMEN
Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain's response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6-8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants' demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18-30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15-25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects' favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art appreciation is independent of the artists' intent or original interpretation and related to the individual message that viewers themselves provide to each piece.
RESUMEN
Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI) and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.
Asunto(s)
Aparatos Ortopédicos , Paraplejía/terapia , Humanos , Presión , Calidad de Vida , Traumatismos de la Médula Espinal/terapiaRESUMEN
Although efforts to characterize human movement through electroencephalography (EEG) have revealed neural activities unique to limb control that can be used to infer movement kinematics, it is still unknown the extent to which EEG can be used to discern the expressive qualities that influence such movements. In this study we used EEG and inertial sensors to record brain activity and movement of five skilled and certified Laban Movement Analysis (LMA) dancers. Each dancer performed whole body movements of three Action types: movements devoid of expressive qualities ("Neutral"), non-expressive movements while thinking about specific expressive qualities ("Think"), and enacted expressive movements ("Do"). The expressive movement qualities that were used in the "Think" and "Do" actions consisted of a sequence of eight Laban Effort qualities as defined by LMA-a notation system and language for describing, visualizing, interpreting and documenting all varieties of human movement. We used delta band (0.2-4 Hz) EEG as input to a machine learning algorithm that computed locality-preserving Fisher's discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models to classify all the possible combinations of Action Type and Laban Effort quality (giving a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential relations between the EEG and movement kinematics of the dancer's body, indicated that motion-related artifacts did not significantly influence our classification results. In summary, this research demonstrates that EEG has valuable information about the expressive qualities of movement. These results may have applications for advancing the understanding of the neural basis of expressive movements and for the development of neuroprosthetics to restore movements.