Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nature ; 622(7984): 712-717, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37880437

RESUMEN

The detection of deep reflected S waves on Mars inferred a core size of 1,830 ± 40 km (ref. 1), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core-mantle boundary2. An alternative hypothesis is that Mars's mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer3. Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars's dissipative nature at Phobos tides. The core size in this scenario is 1,650 ± 20 km, implying a density of 6.5 g cm-3, 5-8% larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars's crust.

3.
J Geophys Res Planets ; 127(9): e2021JE007067, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36590820

RESUMEN

We present inversions for the structure of Mars using the first Martian seismic record collected by the InSight lander. We identified and used arrival times of direct, multiples, and depth phases of body waves, for 17 marsquakes to constrain the quake locations and the one-dimensional average interior structure of Mars. We found the marsquake hypocenters to be shallower than 40 km depth, most of them being located in the Cerberus Fossae graben system, which could be a source of marsquakes. Our results show a significant velocity jump between the upper and the lower part of the crust, interpreted as the transition between intrusive and extrusive rocks. The lower crust makes up a significant fraction of the crust, with seismic velocities compatible with those of mafic to ultramafic rocks. Additional constraints on the crustal thickness from previous seismic analyses, combined with modeling relying on gravity and topography measurements, yield constraints on the present-day thermochemical state of Mars and on its long-term history. Our most constrained inversion results indicate a present-day surface heat flux of 22 ± 1 mW/m2, a relatively hot mantle (potential temperature: 1740 ± 90 K) and a thick lithosphere (540 ± 120 km), associated with a lithospheric thermal gradient of 1.9 ± 0.3 K/km. These results are compatible with recent seismic studies using a reduced data set and different inversion approaches, confirming that Mars' potential mantle temperature was initially relatively cold (1780 ± 50 K) compared to that of its present-day state, and that its crust contains 10-12 times more heat-producing elements than the primitive mantle.

4.
Nature ; 539(7629): 420-424, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27853207

RESUMEN

The chemistry of aqueous fluids controls the transport and exchange-the cycles-of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth's interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth's atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.

5.
Nature ; 462(7270): 209-12, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19907492

RESUMEN

Magmatic production on Earth is dominated by asthenospheric melts of basaltic composition that have mostly erupted at mid-ocean ridges. The timescale for segregation and transport of these melts, which are ultimately responsible for formation of the Earth's crust, is critically dependent on the permeability of the partly molten asthenospheric mantle, yet this permeability is known mainly from semi-empirical and analogue models. Here we use a high-pressure, high-temperature centrifuge, at accelerations of 400g-700g, to measure the rate of basalt melt flow in olivine aggregates with porosities of 5-12 per cent. The resulting permeabilities are consistent with a microscopic model in which melt is completely connected, and are one to two orders of magnitude larger than predicted by current parameterizations. Extrapolation of the measurements to conditions characteristic of asthenosphere below mid-ocean ridges yields proportionally higher transport speeds. Application of these results in a model of porous-media channelling instabilities yields melt transport times of approximately 1-2.5 kyr across the entire asthenosphere, which is sufficient to preserve the observed (230)Th excess of mid-ocean-ridge basalts and the mantle signatures of even shorter-lived isotopes such as (226)Ra (refs 5,11-14).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA