Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 13(1): e0362121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038896

RESUMEN

Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and posttranscriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a population-wide scale. Recently, the TetR family transcriptional regulator LuxT was shown to control Vibrio harveyi qrr1, encoding the Qrr1 small RNA that functions at the core of the QS regulatory cascade. Here, we use RNA sequencing to reveal that, beyond the control of qrr1, LuxT is a global regulator of 414 V. harveyi genes, including those involved in type III secretion, siderophore production, and aerolysin toxin biosynthesis. Importantly, LuxT directly represses swrZ, encoding a GntR family transcriptional regulator, and LuxT control of type III secretion, siderophore, and aerolysin genes occurs by two mechanisms, one that is SwrZ dependent and one that is SwrZ independent. All of these target genes specify QS-controlled behaviors that are enacted when V. harveyi is at low cell density. Thus, LuxT and SwrZ function in parallel with QS to drive particular low-cell-density behaviors. Phylogenetic analyses reveal that luxT is highly conserved among Vibrionaceae, but swrZ is less well conserved. In a test case, we find that in Aliivibrio fischeri, LuxT also represses swrZ. SwrZ is a repressor of A. fischeri siderophore production genes. Thus, LuxT repression of swrZ drives the activation of A. fischeri siderophore gene expression. Our results indicate that LuxT is a major regulator among Vibrionaceae, and in the species that also possess swrZ, LuxT functions with SwrZ to control gene expression. IMPORTANCE Bacteria precisely tune gene expression patterns to successfully react to changes that occur in the environment. Defining the mechanisms that enable bacteria to thrive in diverse and fluctuating habitats, including in host organisms, is crucial for a deep understanding of the microbial world and also for the development of effective applications to promote or combat particular bacteria. In this study, we show that a regulator called LuxT controls over 400 genes in the marine bacterium Vibrio harveyi and that LuxT is highly conserved among Vibrionaceae species, ubiquitous marine bacteria that often cause disease. We characterize the mechanisms by which LuxT controls genes involved in virulence and nutrient acquisition. We show that LuxT functions in parallel with a set of regulators of the bacterial cell-to-cell communication process called quorum sensing to promote V. harveyi behaviors at low cell density.


Asunto(s)
Sideróforos , Vibrio , Sideróforos/metabolismo , Filogenia , Vibrio/genética , Percepción de Quorum/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
PLoS Pathog ; 15(6): e1007820, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31194839

RESUMEN

Quorum sensing is a chemical communication process that bacteria use to coordinate group behaviors. Pseudomonas aeruginosa, an opportunistic pathogen, employs multiple quorum-sensing systems to control behaviors including virulence factor production and biofilm formation. One P. aeruginosa quorum-sensing receptor, called RhlR, binds the cognate autoinducer N-butryl-homoserine lactone (C4HSL), and the RhlR:C4HSL complex activates transcription of target quorum-sensing genes. Here, we use a genetic screen to identify RhlR mutants that function independently of the autoinducer. The RhlR Y64F W68F V133F triple mutant, which we call RhlR*, exhibits ligand-independent activity in vitro and in vivo. RhlR* can drive wildtype biofilm formation and infection in a nematode animal model. The ability of RhlR* to properly regulate quorum-sensing-controlled genes in vivo depends on the quorum-sensing regulator RsaL keeping RhlR* activity in check. RhlR is known to function together with PqsE to control production of the virulence factor called pyocyanin. Likewise, RhlR* requires PqsE for pyocyanin production in planktonic cultures, however, PqsE is dispensable for RhlR*-driven pyocyanin production on surfaces. Finally, wildtype RhlR protein is not sufficiently stabilized by C4HSL to allow purification. However, wildtype RhlR can be stabilized by the synthetic ligand mBTL (meta-bromo-thiolactone) and RhlR* is stable without a ligand. These features enabled purification of the RhlR:mBTL complex and of RhlR* for in vitro examination of their biochemical activities. To our knowledge, this work reports the first RhlR protein purification.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Percepción de Quorum/fisiología , Receptores de Superficie Celular , Sustitución de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans , Mutación Missense , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/química , Piocianina/genética , Piocianina/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
3.
ACS Chem Biol ; 14(3): 378-389, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30763066

RESUMEN

Bacteria use a cell-cell communication process called quorum sensing to coordinate collective behaviors. Quorum sensing relies on production and group-wide detection of extracellular signal molecules called autoinducers. Here, we probe the activity of the Pseudomonas aeruginosa LasR quorum-sensing receptor using synthetic agonists based on the structure of the native homoserine lactone autoinducer. The synthetic compounds range from low to high potency, and agonist activity tracks with the ability of the agonist to stabilize the LasR protein. Structural analyses of the LasR ligand binding domain complexed with representative synthetic agonists reveal two modes of ligand binding, one mimicking the canonical autoinducer binding arrangement, and the other with the lactone head group rotated approximately 150°. Iterative mutagenesis combined with chemical synthesis reveals the amino acid residues and the chemical moieties, respectively, that are key to enabling each mode of binding. Simultaneous alteration of LasR residues Thr75, Tyr93, and Ala127 converts low-potency compounds into high-potency compounds and converts ligands that are nearly inactive into low-potency compounds. These results show that the LasR binding pocket displays significant flexibility in accommodating different ligands. The ability of LasR to bind ligands in different conformations, and in so doing, alter their potency as agonists, could explain the difficulties that have been encountered in the development of competitive LasR inhibitors.


Asunto(s)
4-Butirolactona/análogos & derivados , Proteínas Bacterianas/metabolismo , Percepción de Quorum/efectos de los fármacos , Transactivadores/metabolismo , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Aminoácidos/química , Escherichia coli/efectos de los fármacos , Ligandos , Estructura Molecular , Mutación , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Transducción de Señal , Relación Estructura-Actividad
6.
Nat Chem Biol ; 13(5): 551-557, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28319101

RESUMEN

Quorum sensing (QS) is a cell-cell communication process that enables bacteria to track cell population density and orchestrate collective behaviors. QS relies on the production and detection of, and the response to, extracellular signal molecules called autoinducers. In Vibrio cholerae, multiple QS circuits control pathogenesis and biofilm formation. Here, we identify and characterize a new QS autoinducer-receptor pair. The autoinducer is 3,5-dimethylpyrazin-2-ol (DPO). DPO is made from threonine and alanine, and its synthesis depends on threonine dehydrogenase (Tdh). DPO binds to and activates a transcription factor, VqmA. The VqmA-DPO complex activates expression of vqmR, which encodes a small regulatory RNA. VqmR represses genes required for biofilm formation and toxin production. We propose that DPO allows V. cholerae to regulate collective behaviors to, among other possible roles, diversify its QS output during colonization of the human host.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Pirazoles/metabolismo , Proteínas Represoras/metabolismo , Vibrio cholerae/metabolismo , Regulación Bacteriana de la Expresión Génica , Pirazoles/química , Percepción de Quorum , Proteínas Represoras/química , Proteínas Represoras/genética , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo
7.
J Biol Chem ; 292(10): 4064-4076, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28119451

RESUMEN

Quorum sensing is a process of cell-cell communication that bacteria use to regulate collective behaviors. Quorum sensing depends on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. In many bacterial species, quorum sensing controls virulence factor production. Thus, disrupting quorum sensing is considered a promising strategy to combat bacterial pathogenicity. Several members of a family of naturally produced plant metabolites called flavonoids inhibit Pseudomonas aeruginosa biofilm formation by an unknown mechanism. Here, we explore this family of molecules further, and we demonstrate that flavonoids specifically inhibit quorum sensing via antagonism of the autoinducer-binding receptors, LasR and RhlR. Structure-activity relationship analyses demonstrate that the presence of two hydroxyl moieties in the flavone A-ring backbone are essential for potent inhibition of LasR/RhlR. Biochemical analyses reveal that the flavonoids function non-competitively to prevent LasR/RhlR DNA binding. Administration of the flavonoids to P. aeruginosa alters transcription of quorum sensing-controlled target promoters and suppresses virulence factor production, confirming their potential as anti-infectives that do not function by traditional bacteriocidal or bacteriostatic mechanisms.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Flavonoides/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/fisiología , Transactivadores/antagonistas & inhibidores , Virulencia/efectos de los fármacos , Regulación Alostérica , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/crecimiento & desarrollo , Percepción de Quorum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 112(7): E766-75, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646441

RESUMEN

Quorum sensing (QS) is a process of cell-to-cell communication that enables bacteria to transition between individual and collective lifestyles. QS controls virulence and biofilm formation in Vibrio cholerae, the causative agent of cholera disease. Differential RNA sequencing (RNA-seq) of wild-type V. cholerae and a locked low-cell-density QS-mutant strain identified 7,240 transcriptional start sites with ∼ 47% initiated in the antisense direction. A total of 107 of the transcripts do not appear to encode proteins, suggesting they specify regulatory RNAs. We focused on one such transcript that we name VqmR. vqmR is located upstream of the vqmA gene encoding a DNA-binding transcription factor. Mutagenesis and microarray analyses demonstrate that VqmA activates vqmR transcription, that vqmR encodes a regulatory RNA, and VqmR directly controls at least eight mRNA targets including the rtx (repeats in toxin) toxin genes and the vpsT transcriptional regulator of biofilm production. We show that VqmR inhibits biofilm formation through repression of vpsT. Together, these data provide to our knowledege the first global annotation of the transcriptional start sites in V. cholerae and highlight the importance of posttranscriptional regulation for collective behaviors in this human pathogen.


Asunto(s)
Biopelículas , ARN Viral/genética , Análisis de Secuencia de ARN , Vibrio cholerae/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Genes Bacterianos , Datos de Secuencia Molecular , Mutagénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Homología de Secuencia de Ácido Nucleico , Transcripción Genética
9.
J Bacteriol ; 197(1): 73-80, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25313392

RESUMEN

Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.


Asunto(s)
Presión Osmótica/fisiología , Percepción de Quorum/fisiología , Vibrio/fisiología , Betaína/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estrés Fisiológico , Transactivadores/genética , Transactivadores/metabolismo , Vibrio/genética
10.
Proc Natl Acad Sci U S A ; 109(31): 12746-51, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802636

RESUMEN

Cyclic di-GMP (c-di-GMP) is a second messenger molecule that regulates the transition between sessile and motile lifestyles in bacteria. Bacteria often encode multiple diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes that produce and degrade c-di-GMP, respectively. Because of multiple inputs into the c-di-GMP-signaling network, it is unclear whether this system functions via high or low specificity. High-specificity signaling is characterized by individual DGCs or PDEs that are specifically associated with downstream c-di-GMP-mediated responses. In contrast, low-specificity signaling is characterized by DGCs or PDEs that modulate a general signal pool, which, in turn, controls a global c-di-GMP-mediated response. To determine whether c-di-GMP functions via high or low specificity in Vibrio cholerae, we correlated the in vivo c-di-GMP concentration generated by seven DGCs, each expressed at eight different levels, to the c-di-GMP-mediated induction of biofilm formation and transcription. There was no correlation between total intracellular c-di-GMP levels and biofilm formation or gene expression when considering all states. However, individual DGCs showed a significant correlation between c-di-GMP production and c-di-GMP-mediated responses. Moreover, the rate of phenotypic change versus c-di-GMP concentration was significantly different between DGCs, suggesting that bacteria can optimize phenotypic output to c-di-GMP levels via expression or activation of specific DGCs. Our results conclusively demonstrate that c-di-GMP does not function via a simple, low-specificity signaling pathway in V. cholerae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Sistemas de Mensajero Secundario/fisiología , Vibrio cholerae/fisiología , Proteínas Bacterianas/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética
11.
Int J Oncol ; 40(4): 1196-202, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22179544

RESUMEN

LeY (Lewis Y) is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Elevation of LeY is frequently observed in epithelial-derived cancers and is correlated to pathological staging and prognosis. To study the role of LeY on cancer cells, a stably LeY-overexpressing cell line, RMG-I-H, was developed previously by transfection of the α1,2-fucosyltransferase gene, a key enzyme that catalyzes the synthesis of LeY, into ovarian carcinoma-derived RMG-I cells. Our studies have shown that LeY is involved in the changes in biological behavior of RMG-I-H cells. However, the mechanism is still largely unknown. In this study, we determined the structural relationship and co-localization between LeY and TßRI/TßRII, respectively, and the potential cellular signaling mechanism was also investigated. We found that both TßRI and TßRII contain the LeY structure, and the level of LeY in TßRI and TßRII in RMG-I-H cells was significantly increased. Overexpression of LeY up-regulates the phosphorylation of ERK, Akt and down-regulates the phosphorylation of Smad2/3. In addition, the phosphorylation intensity was attenuated significantly by LeY monoantibody. These findings suggest that LeY is involved in the changes in biological behavior through TGF­ß receptors via Smad, ERK/MAPK and PI3K/Akt signaling pathways. We suggest that LeY may be an important composition of growth factor receptors and could be an attractive candidate for cancer diagnosis and treatment.


Asunto(s)
Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Neoplasias Ováricas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Femenino , Humanos , Antígenos del Grupo Sanguíneo de Lewis/genética , Ratones , Ratones Endogámicos BALB C , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Transducción de Señal , Transfección
12.
J Enzyme Inhib Med Chem ; 24(1): 234-40, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18608781

RESUMEN

The present work focused on the kinetics of the inhibitory effects of the leaf extract of Siberian Crabapple, named Shan jingzi in China, on chicken liver fatty acid synthase. The results showed that this extract had much stronger inhibitory ability on fatty acid synthase than that from green teas described in many previous reports. The inhibitory ability of this extract is closely related to the extracting solvent, and the time of extraction was also an important influencing factor. The inhibitory types of this extract on diffeerent substrates of chicken liver fatty acid synthase, acetyl-CoA, malonyl-CoA and NADPH, were found to be noncompetitive, uncompetitive and mixed, respectively. The studies here shed a new light on the exploration for inhibitors of fatty acid synthase.


Asunto(s)
Ácido Graso Sintasas/antagonistas & inhibidores , Malus/química , Extractos Vegetales/aislamiento & purificación , Animales , Pollos , Cinética , Extractos Vegetales/farmacología , Hojas de la Planta/química , Solventes
13.
Proc Natl Acad Sci U S A ; 99(6): 3932-7, 2002 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-11867761

RESUMEN

Cyclooxygenase 2 (COX-2) mRNA, protein, and activity are transiently induced after infection of human fibroblasts with human cytomegalovirus. Prostaglandin E(2), the product of COX-2 activity, is transiently increased by a factor of >50 in cultures of virus-infected fibroblasts. Both specific (BMS-279652, 279654, and 279655) and nonspecific (indomethacin) COX-2 inhibitors can abrogate the virus-mediated induction of prostaglandin E(2) accumulation. Levels of COX-2 inhibitors that completely block the induction of COX-2 activity, but do not compromise cell viability, reduce the yield of human cytomegalovirus in human fibroblasts by a factor of >100. Importantly, the yield of infectious virus can be substantially restored by the addition of prostaglandin E(2) together with the inhibitory drug. This finding argues that elevated levels of prostaglandin E(2) are required for efficient replication of human cytomegalovirus in fibroblasts. COX-2 inhibitors block the accumulation of immediate-early 2 mRNA and protein, but have little effect on the levels of immediate-early 1 mRNA and protein. Viral DNA replication and the accumulation of some, but not all, early and late mRNAs are substantially blocked by COX-2 inhibitors. Elevated levels of prostaglandin E(2) apparently facilitate the production of immediate-early 2 protein. The failure to produce normal levels of this critical viral regulatory protein in the presence of COX-2 inhibitors might block normal progression beyond the immediate-early phase of human cytomegalovirus infection.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Citomegalovirus/efectos de los fármacos , Citomegalovirus/crecimiento & desarrollo , Isoenzimas/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Citomegalovirus/genética , Citomegalovirus/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Dinoprostona/biosíntesis , Inducción Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de la Membrana , Prostaglandina-Endoperóxido Sintasas/biosíntesis , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA