Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 172(4): 1953-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307140

RESUMEN

This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible.


Asunto(s)
Benzaldehídos/química , Benzaldehídos/metabolismo , Biotecnología/métodos , Técnicas Electroquímicas/métodos , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Eugenol/química , Eugenol/metabolismo , Platino (Metal)/química , Platino (Metal)/metabolismo , Ácido Vanílico/química , Ácido Vanílico/metabolismo
2.
Talanta ; 97: 157-62, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22841061

RESUMEN

Determination of silicate concentration in seawater without addition of liquid reagents was the key prerequisite for developing an autonomous in situ electrochemical silicate sensor (Lacombe et al., 2007) [11]. The present challenge is to address the issue of calibrationless determination. To achieve such an objective, we chose chronoamperometry performed successively on planar microelectrode (ME) and ultramicroelectrode (UME) among the various possibilities. This analytical method allows estimating simultaneously the diffusion coefficient and the concentration of the studied species. Results obtained with ferrocyanide are in excellent agreement with values of the imposed concentration and diffusion coefficient found in the literature. For the silicate reagentless method, successive chronoamperometric measurements have been performed using a pair of gold disk electrodes for both UME and ME. Our calibrationless method was tested with different concentrations of silicate in artificial seawater from 55 to 140×10(-6) mol L(-1). The average value obtained for the diffusion coefficient of the silicomolybdic complex is 2.2±0.4×10(-6) cm(2) s(-1), consistent with diffusion coefficient values of molecules in liquid media. Good results were observed when comparing known concentration of silicate with experimentally derived ones. Further work is underway to explore silicate determination within the lower range of oceanic silicate concentration, down to 0.1×10(-6) mol L(-1).

3.
J Pharm Biomed Anal ; 40(1): 162-7, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-16137853

RESUMEN

Cyclic voltammetry is proposed as a new method for evaluating the antioxidant capacity of skin based on the reducing properties of low molecular weight antioxidants (LMWA). Experiments were performed simply by recording the anodic current at 0.9 V/SCE of a platinum microelectrode placed directly on the epidermis surface without any gel or water. This method ensured a direct, rapid (less than 1 min), reliable (accuracy 12%) and non-invasive measurement of the global antioxidant capacity of the stratum corneum with a high spatiotemporal resolution. At the same time, the pH of the skin surface was determined by recording the cathodic current at 0 V/SCE. Based on an exploratory study involving nine volunteer subjects, the evolution of the amperometric response of the microelectrode with time revealed a periodic modification of the redox properties.


Asunto(s)
Antioxidantes/análisis , Química Farmacéutica/métodos , Epidermis/efectos de los fármacos , Epidermis/fisiología , Potenciometría/métodos , Antioxidantes/química , Ácido Ascórbico/análisis , Técnicas de Química Analítica/métodos , Electroquímica , Electrodos , Electrofisiología , Depuradores de Radicales Libres , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Reproducibilidad de los Resultados , Factores de Tiempo
4.
Biosens Bioelectron ; 20(2): 204-10, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15308223

RESUMEN

Ferricyanide ions were immobilized on a platinum electrode surface by means of an electrochemically grown polypyrrole film. The entrapped Fe(CN)6(3-)/Fe(CN)6(4-) redox system displayed a high heterogeneous electron transfer rate. The resulting modified electrode was efficient for the ferricyanide-mediated NADH oxidation catalyzed by a diaphorase. The bioelectrochemical interface was applied to the design of a reagentless amperometric D-lactate biosensor. A weakly polarized two polypyrrole-containing Fe(CN)6(3-) modified electrode system was involved without any reference. An enzymatic solution containing D-lactate dehydrogenase, diaphorase and NAD-dextran was further confined on the sensing electrode using a semi-permeable membrane. The sensitivity and the response time of the reagentless biosensor were similar to those of the analogous sensor working with soluble mediator and cofactor, i.e. 25 microA mM(-1) cm(-2) and 120 s, respectively. The other analytical performances were less satisfactorily: the detection limit was 5 x 10 mmol L(-1) and the linearity range was comprised between 0.1 and 0.5 mmol L(-1).


Asunto(s)
Técnicas Biosensibles/instrumentación , Electroquímica/instrumentación , Ferricianuros/química , Lactato Deshidrogenasas/química , Ácido Láctico/análisis , Ácido Láctico/química , NAD/química , Polímeros/química , Pirroles/química , Técnicas Biosensibles/métodos , Materiales Biocompatibles Revestidos/química , Electroquímica/métodos , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo , Indicadores y Reactivos/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA