RESUMEN
The need of small integration time steps (â¼1 fs) in conventional molecular dynamics simulations is an important issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work, we generalize the Green's function molecular dynamics technique to allow simulations within the canonical ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity autocorrelation function. We show that the proposed technique also allows the use of time steps one order of magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this technique can be used in long-timescale molecular dynamics simulations.
RESUMEN
Diamondoids are hydrogen-terminated nanosized diamond fragments that are present in petroleum crude oil at low concentrations. These fragments are found as oligomers of the smallest diamondoid, adamantane (C(10)H(16)). Due to their small size, diamondoids can be encapsulated into carbon nanotubes to form linear arrangements. We have investigated the encapsulation of diamondoids into single walled carbon nanotubes with diameters between 1.0 and 2.2 nm using fully atomistic simulations. We performed classical molecular dynamics and energy minimizations calculations to determine the most stable configurations. We observed molecular ordered phases (e.g. double, triple, 4- and 5-stranded helices) for the encapsulation of adamantane, diamantane, and dihydroxy diamantane. Our results also indicate that the functionalization of diamantane with hydroxyl groups can lead to an improvement on the molecular packing factor when compared to non-functionalized compounds. Comparisons to hard-sphere models revealed differences, especially when more asymmetrical diamondoids were considered. For larger diamondoids (i.e., adamantane tetramers), we have not observed long-range ordering but only a tendency to form incomplete helical structures. Our calculations predict that thermally stable (at least up to room temperature) complex ordered phases of diamondoids can be formed through encapsulation into carbon nanotubes.
RESUMEN
We propose and theoretically investigated a new class of topologically closed macromolecules built using single walled carbon nanotubes. These macromolecules are based on the fullerene architecture. Classical molecular dynamics simulations were used to predict their stability, thermal, vibrational, and mechanical properties. These macromolecules, named 'super'-fullerenes, present high porosity, low density (approximately 1 g/cm3), and high surface area (approximately equal 2500 m2/g). Our results predict gas phase specific heat of about 0.4 Jg(-1)K(-1) at room temperature and high flexibility under compressive strains. These properties make these hypothetical macromolecules good candidates for gas storage material and biomolecular sieves.
Asunto(s)
Fulerenos/química , Nanotubos de Carbono , Simulación de Dinámica Molecular , Estructura MolecularRESUMEN
We report classical and tight-binding molecular dynamics simulations of the C(60) fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C(60) fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (approximately < 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (approximately > 10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed.
RESUMEN
Helical or coiled nanostructures have been objects of intense experimental and theoretical studies due to their special electronic and mechanical properties. Recently, it was experimentally reported that the dynamical response of a foamlike forest of coiled carbon nanotubes under mechanical impact exhibits a nonlinear, non-Hertzian behavior, with no trace of plastic deformation. The physical origin of this unusual behavior is not yet fully understood. In this Letter, based on analytical models, we show that the entanglement among neighboring coils in the superior part of the forest surface must be taken into account for a full description of the strongly nonlinear behavior of the impact response of a drop ball onto a forest of coiled carbon nanotubes.
RESUMEN
Nanotechnology is stimulating the development of nanomanipulators, including tips to interact with individual nanosystems. Fabricating nanotips fulfilling the requirements of shape (size, aspect ratio), mechanical, magnetic, and electrical properties is a material science challenge. Here, we report the generation of reinforced carbon-carbon composite nanotools using a nanotube (CNTs) covered by an amorphous carbon matrix (shell); the CNT tip protruded and remained uncoated to preserve apex size. Unsuitable properties such as flexibility and vibration could be controlled without deteriorating the CNT size, strength, and resilience. Nanomanipulation experiments and molecular dynamics simulations have been used to study the mechanical response of these composite beams under bending efforts. AFM probes based on these C-C composite high aspect ratio tips generated excellent image resolution and showed no degradation after acquiring several hundred (400) images.
Asunto(s)
Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Electrónica de RastreoRESUMEN
We present a theoretical study of the electronic and mechanical properties of graphyne-based nanotubes (GNTs). These semiconducting nanotubes result from the elongation of one-third of the covalent interconnections of graphite-based nanotubes by the introduction of yne groups. The effect of charge injection on the dimensions of GNTs was investigated using tight-binding calculations. Low amounts of electron injection are predicted to cause qualitatively different responses for armchair and zigzag graphyne nanotubes. Although the behavior is qualitatively similar to the usual carbon nanotubes, the charge-induced strains are predicted to be smaller for the GNTs than for ordinary single walled carbon nanotubes.
RESUMEN
Recently, Zheng and Jiang [Phys. Rev. Lett. 88, 045503 (2002)]] have proposed that multiwalled carbon nanotubes could be the basis for a new generation of nano-oscillators in the several gigahertz range. In this Letter, we present the first molecular dynamics simulation for these systems. Different nanotube types were considered in order to verify the reliability of such devices as gigahertz oscillators. Our results show that these nano-oscillators are dynamically stable when the radii difference values between inner and outer tubes are of approximately 3.4 A. Frequencies as large as 38 GHz were observed, and the calculated force values are in good agreement with recent experimental investigations.