Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(2): e0172458, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28241018

RESUMEN

Conservation scientists increasingly recognize that incorporating human values into conservation planning increases the chances for success by garnering broader project acceptance. However, methods for defining quantitative targets for the spatial representation of human well-being priorities are less developed. In this study we employ an approach for identifying regionally important human values and establishing specific spatial targets for their representation based on stakeholder outreach. Our primary objective was to develop a spatially-explicit conservation plan that identifies the most efficient locations for conservation actions to meet ecological goals while sustaining or enhancing human well-being values within the coastal and nearshore areas of the western Lake Erie basin (WLEB). We conducted an optimization analysis using 26 features representing ecological and human well-being priorities (13 of each), and included seven cost layers. The influence that including human well-being had on project results was tested by running five scenarios and setting targets for human well-being at different levels in each scenario. The most important areas for conservation to achieve multiple goals are clustered along the coast, reflecting a concentration of existing or potentially restorable coastal wetlands, coastal landbird stopover habitat and terrestrial biodiversity, as well as important recreational activities. Inland important areas tended to cluster around trails and high quality inland landbird stopover habitat. Most concentrated areas of importance also are centered on lands that are already conserved, reflecting the lower costs and higher benefits of enlarging these conserved areas rather than conserving isolated, dispersed areas. Including human well-being features in the analysis only influenced the solution at the highest target levels.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecología , Lagos , Humedales , Animales , Aves , Ecosistema , Geografía , Humanos , Michigan , Ohio , Ontario
2.
Opt Express ; 18(5): 4148-57, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20389428

RESUMEN

Inverse method has wide application on medical diagnosis where non-destructive evaluation is the key factor .Back scattered waves or echoes generated from the forward moving waves has information about its geometry, size and location. In this paper we have investigated how well different geometries of the object is determined from the back scattered waves by a high accuracy Non-Standard Finite Difference Time Inverse (NSFD-TI) Maxwell's algorithm and how the refractive index of the object plays a deterministic role on its size.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 1): 051924, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20365023

RESUMEN

We use the nonstandard-finite-difference time-domain (NS-FDTD) method to investigate the interaction of light with the complicated microstructures in the Morpho butterfly scales, which produce the well-known brilliant blue coloring. The NS-FDTD algorithm is particularly suitable to analyze such complex structures because the calculation can be performed in a short time with high accuracy on a relatively coarse numerical grid. We analyze (1) the microstructure obtained directly by binarizing an electron microgram of the cross section of a scale, (2) the reflection and diffraction properties of three model structures--flat, alternating, and tree-shaped alternating multilayers, and (3) an array of alternating multilayers with random noise superposed on the height of the structures. We found that the actual microstructure well reproduced the reflection spectrum in a blue region by integrating the reflection intensities over all the reflection angles. Under normal incidence, the flat multilayer mainly stresses on multilayer interference except for shorter wavelengths, while alternating multilayer rather enhances the effect of diffraction grating due to longitudinally repeating structure by strongly suppressing the reflection toward the normal direction. In the array of alternating multilayers, the reflection into larger angles is considerably suppressed and the spectral shape becomes different from that expected for a single alternating multilayer. This suppression mainly comes from the scattering of reflected light by adjacent structures, which is particularly prominent for the TM mode. Thus a clear difference between the TE and TM modes is observed with respect to the origin of spectral shape, though the obtained spectra are similar to each other. Finally, the polarization dependence of the reflection and the importance of the alternating multilayer are discussed.


Asunto(s)
Mariposas Diurnas/química , Mariposas Diurnas/ultraestructura , Modelos Anatómicos , Modelos Biológicos , Modelos Químicos , Alas de Animales/química , Alas de Animales/ultraestructura , Animales , Color , Simulación por Computador , Análisis de Elementos Finitos
4.
J Opt Soc Am A Opt Image Sci Vis ; 25(8): 1921-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18677354

RESUMEN

We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.

5.
Micron ; 38(2): 109-14, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17092731

RESUMEN

We introduce a new high accuracy second-order finite-difference time-domain (FDTD) algorithm based on non-standard finite differences, and use it to investigate light propagation in subwavelength structures such as photonic crystals.

6.
Micron ; 38(2): 97-103, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16942885

RESUMEN

In certain species of moths and butterflies iridescent colours arise from subwavelength diffractive structures. The optical properties of such a structure depend strongly on wavelength, incidence angle and state of polarization of illuminating radiation and on the viewing angle. Such structures can be analyzed only by solving Maxwell's equations, but since analytical solutions exist for only a few simple, highly symmetric structures numerical methods must be employed. We investigated the optical properties of butterfly wings in two dimensions by simulating a scale structure using a high accuracy version of nonstandard finite-difference time-domain algorithm. The simulated structure is a computer-generated model of a certain quasi-periodic arrangement of tree-like structures observed in the transmission electron micrograph (TEM) image of a transverse cross-section of a single scale from Morpho butterfly wings. We assumed that the structure is made of a slightly lossy dielectric material. We checked the accuracy and validity of our approach, by computing scattered field intensities due to an infinite cylinder and compared the results with analytical calculations using Mie theory. Next we deduced the wavelength dependence of a real refractive index and an absorption coefficient for the ground scales on the wings of Morpho sulkowskyi butterfly by computing the reflectivity and transmissivity spectrum of a scale at normal incidence, and comparing with experimental measurements. Finally, we calculated the tristimulus values and corresponding colour coordinates for various viewing directions from the scale's far-field reflectivity and transmissivity spectra to characterize its colour rendering abilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA