Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(12): 123401, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30978081

RESUMEN

We have developed an approach to continuously load ultracold ^{85}Rb_{2} vibrational ground-state molecules into a crossed optical dipole trap from a magneto-optical trap. The technique relies on a single high-power light beam with a broad spectrum superimposed onto a narrow peak at an energy of about 9400 cm^{-1}. This single laser source performs all the required steps: the short-range photoassociation creating ground-state molecules after radiative emission, the cooling of the molecular vibrational population down to the lowest vibrational level v_{X}=0, and the optical trapping of these molecules. Furthermore, we probe by depletion spectroscopy and determine that 75% of the v_{X}=0 ground-state molecules are in the three lowest rotational levels J_{X}=0, 1, 2. The lifetime of the ultracold molecules in the optical dipole trap is limited to about 70 ms by off-resonant light scattering. The proposed technique opens perspectives for the formation of new molecular species in the ultracold domain, which are not yet accessible by well-established approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA