Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Neuropsychiatr ; : 1-13, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370934

RESUMEN

The dorsal midbrain comprises dorsal columns of the periaqueductal grey matter and corpora quadrigemina. These structures are rich in beta-endorphinergic and leu-enkephalinergic neurons and receive GABAergic inputs from substantia nigra pars reticulata. Although the inferior colliculus (IC) is mainly involved in the acoustic pathways, the electrical and chemical stimulation of central and pericentral nuclei of the IC elicits a vigorous defensive behaviour. The defensive immobility and escape elicited by IC activation is commonly related to panic-like emotional states. To investigate the role of κ-opioid receptor of the IC in the antiaversive effects of endogenous opioid receptor blockade in a dangerous situation, male Wistar rats were pretreated in the IC with the κ-opioid receptor-selective antagonist nor-binaltorphimine at different concentrations and submitted to the non-enriched polygonal arena for a snake panic test in the presence of a rattlesnake and, after 24 h, prey were resubmitted to the experimental context. The snakes elicited in prey a set of antipredatory behaviours, such as the anxiety-like responses of defensive attention and risk assessment, and the panic-like reactions of defensive immobility and either escape or active avoidance during the elaboration of unconditioned and conditioned fear-related responses. Pretreatment of the IC with microinjections of nor-binaltorphimine at higher concentrations significantly decreased the frequency and duration of both anxiety- and panic-attack-like behaviours. These findings suggest that κ-opioid receptor blockade in the IC causes anxiolytic- and panicolytic-like responses in threatening conditions, and that kappa-opioid receptor-selective antagonists can be a putative coadjutant treatment for panic syndrome treatment.

2.
Methods Mol Biol ; 2831: 351-375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134862

RESUMEN

Fluorescent and non-fluorescent neural tract tracers enable the investigation of neural pathways in both peripheral and central nervous systems in laboratory animals demonstrating images with high resolution and great anatomic precision. Anterograde and retrograde viral tracers are important cutting-edge tools for neuroanatomical mapping. The optogenetic consists of an advanced alternative for in vivo neural tract tracing procedures, fundamentally considering the possibility to dissect and modulate pathways either exciting or inhibiting neural circuits in laboratory animals. The neurotractography by diffusion tensor imaging in vivo procedures enables the study of neural pathways in humans with reasonable accuracy. Here we describe the procedure of classical anatomic neural tract tracing and modern optogenetic technique performed in anima vili in addition to different diffusion tensor neurotractography performed in anima nobili.


Asunto(s)
Imagen de Difusión Tensora , Optogenética , Optogenética/métodos , Animales , Imagen de Difusión Tensora/métodos , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Vías Nerviosas , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/metabolismo , Trazadores del Tracto Neuronal , Humanos , Ratones
3.
Case Rep Neurol ; 16(1): 154-158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015831

RESUMEN

Introduction: Bradykinesia, characterized by slowed movement, stands out as a primary symptom observed in individuals with Parkinson's disease (PD). Nonetheless, there are instances where PD patients exhibit sudden and effective movements despite the presence of bradykinesia. This phenomenon, referred to as paradoxical kinesia, has remained a subject of interest for neuroscientists, who have struggled to unravel its underlying neural mechanisms for decades. Case Presentation: We describe a patient who is suffering from advanced PD. The patient has severe motor limitations, including difficulty rising from bed and walking, as well as cognitive decline and visual impairment. However, an interesting occurrence took place during a nightmare episode. Surprisingly, the patient was able to get out of bed and quickly run away from the perceived threat within the nightmare, without any assistance. Conclusion: This report presents the first documented case of paradoxical kinesia induced by nightmares in a patient with PD. This phenomenon raises questions about the neurological mechanisms involved, which are still not fully understood. Based on existing research conducted on both animal and human subjects, we propose that after processing the emotion of fear, the brain aversive system activates motor outputs to generate appropriate behavior. Thus, the brain aversive system converts the emotion of fear into action through projections from the inferior colliculus to motor-related areas such as the mesencephalic locomotor region, pontine nuclei, and substantia nigra.

4.
Basic Clin Pharmacol Toxicol ; 134(5): 574-601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477419

RESUMEN

Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.


Asunto(s)
Cannabidiol , Cannabinoides , Epilepsia , Trastornos Mentales , Esclerosis Múltiple , Enfermedad de Parkinson , Humanos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Receptor de Serotonina 5-HT1A/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Epilepsia/tratamiento farmacológico , Trastornos Mentales/tratamiento farmacológico , Comorbilidad
5.
Sci Rep ; 14(1): 4069, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374419

RESUMEN

We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonic‒clonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonic‒clonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonic‒clonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.


Asunto(s)
Bencilaminas , Locus Coeruleus , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Locus Coeruleus/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Bulbo Raquídeo/metabolismo , Núcleo Solitario/metabolismo , Norepinefrina/metabolismo , Convulsiones/metabolismo
6.
J Neurosci Res ; 102(2): e25300, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361409

RESUMEN

Environment enrichment (EE) is a well-known eustress model showing beneficial effects in different psychiatric diseases, but its positive properties in panic disorders are not yet established. The confrontation between prey and predator in complex arenas has been validated as a putative panic attack model. The principal aim of this work was to investigate the role of the EE on panic-like defensive responses elicited by mice threatened by venomous snakes. After 6 weeks of exposure either to an enriched or standard environments, 36 male mice were habituated in a complex polygonal arena for snakes containing an artificial burrow and elevated platforms for escape. The animals were confronted by Bothrops jararaca for 5 min, and the following antipredatory responses were recorded: defensive attention, stretched attend posture, flat back approach, prey versus predator interaction, oriented escape behavior, time spent in a safe place, and number of crossings. Mice threatened by snakes displayed several antipredatory reactions as compared to the exploratory behavior of those animals submitted to a nonthreatening situation (toy snake) in the same environment. Notably, EE causes anxiolytic- and panicolytic-like effects significantly decreasing the defensive attention and time spent in safe places and significantly increasing both prey versus predator interaction and exploratory behavior. In conclusion, our data demonstrate that EE can alter the processing of fear modulation regarding both anxiety- and panic-like responses in a dangerous condition, significantly modifying the decision-making defensive strategy.


Asunto(s)
Crotalinae , Trastorno de Pánico , Ratones , Masculino , Animales , Bothrops jararaca , Miedo , Pánico/fisiología
7.
Pharmacol Biochem Behav ; 236: 173710, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262489

RESUMEN

Gamma-aminobutyric acid (GABA) disinhibition in medial hypothalamus (MH) nuclei of rats elicits some defensive reactions that are considered panic attack-like behaviours. Recent evidence showed that the norepinephrine-mediated system modulates fear-related defensive behaviours organised by MH neurons at least in part via noradrenergic receptors recruitment on midbrain tegmentum. However, it is unknown whether noradrenergic receptors of the MH also modulate the panic attack-like reactions. The aim of this work was to investigate the distribution of noradrenergic receptors in MH, and the effects of either α1-, α2- or ß-noradrenergic receptors blockade in the MH on defensive behaviours elaborated by hypothalamic nuclei. Defensive behaviours were evaluated after the microinjection of the selective GABAA receptor antagonist bicuculline into the MH that was preceded by microinjection of either WB4101, RX821002, propranolol (α1-, α2- and ß-noradrenergic receptor selective antagonists, respectively), or physiological saline into the MH of male Wistar rats. The α1-, α2- and ß-noradrenergic receptors were found in neuronal perikarya of all MH nuclei, and the α2-noradrenergic receptor were also found on glial cells mainly situated in the ventrolateral division of the ventromedial hypothalamic nucleus. The α1- and ß-noradrenergic receptors blockade in the MH decreased defensive attention and escape reactions elicited by the intra-MH microinjections of bicuculline. These findings suggest that, despite the profuse distributions of α1-, α2- and ß-noradrenergic receptors in the MH, both α1- and ß-noradrenergic receptor- rather than α2-noradrenergic receptor-signalling in MH are critical for the neuromodulation of panic-like behaviour.


Asunto(s)
Trastorno de Pánico , Ratas , Masculino , Animales , Núcleo Hipotalámico Ventromedial , Bicuculina/farmacología , Ratas Wistar , Transmisión Sináptica , Microinyecciones
8.
Behav Brain Res ; 461: 114832, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38142860

RESUMEN

Popular medicine has been using oleoresin from several species of copaíba tree for the treatment of various diseases and its clinical administration potentially causes antinociception. Electrical stimulation of ventrolateral (vlPAG) and dorsolateral (dlPAG) columns of the periaqueductal gray matter also causes antinociception. The aim this study was to verify the antinociceptive effect of oleoresin extracted from Copaifera langsdorffii tree and to test the hypothesis that oleoresin-induced antinociception is mediated by µ1- and κ-opioid receptors in the vlPAG and dlPAG. Nociceptive thresholds were determined by the tail-flick test in Wistar rats. The copaíba tree oleoresin was administered at different doses (50, 100 and 200 mg/kg) through the gavage technique. After the specification of the most effective dose of copaíba tree oleoresin (200 mg/kg), rats were pretreated with either the µ1-opioid receptor selective antagonist naloxonazine (at 0.05, 0.5 and 5 µg/ 0.2 µl in vlPAG, and 5 µg/ 0.2 µl in dlPAG) or the κ-opioid receptor selective antagonist nor-binaltorphimine (at 1, 3 and 9 nmol/ 0.2 µl in vlPAG, and 9 nmol/ 0.2 µl in dlPAG). The blockade of µ1 and κ opioid receptors of vlPAG decreased the antinociception produced by copaíba tree oleoresin. However, the blockade of these receptors in dlPAG did not alter copaíba tree oleoresin-induced antinociception. These data suggest that vlPAG µ1 and κ opioid receptors are critically recruited in the antinociceptive effect produced by oleoresin extracted from Copaifera langsdorffii.


Asunto(s)
Sustancia Gris Periacueductal , Extractos Vegetales , Receptores Opioides kappa , Ratas , Animales , Ratas Wistar , Árboles , Antagonistas de Narcóticos/farmacología , Analgésicos/farmacología , Receptores Opioides mu
9.
Exp Brain Res ; 241(11-12): 2591-2604, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37725136

RESUMEN

Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 µA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.


Asunto(s)
Hiperalgesia , Neuralgia , Ratas , Masculino , Animales , N-Metilaspartato/farmacología , Dimensión del Dolor , Ratas Wistar , Neuralgia/terapia , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Prefrontal/metabolismo
10.
Behav Brain Res ; 448: 114434, 2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37100351

RESUMEN

The disinhibition of dopamine neurons in the VTA by morphine is considered an important contributor to the reward potency of morphine. In this report, three experiments were conducted in which a low dose of apomorphine (0.05 mg/kg) was used as a pretreatment to reduce dopamine activity. Locomotor hyperactivity was used as the behavioral response to morphine (10.0 mg/kg). In the first experiment, five treatments with morphine induced the development of locomotor and conditioned hyperactivity that were prevented by apomorphine given 10 min prior to morphine. Apomorphine before either vehicle or morphine induced equivalent reductions in locomotion. In the second experiment, the apomorphine pretreatment was initiated after induction of a conditioned hyperactivity and apomorphine prevented the expression of the conditioning. To assess the effects of apomorphine on VTA and the nucleus accumbens, ERK measurements were carried out after the induction of locomotor and conditioned hyperactivity. Increased ERK activation was found and these effects were prevented by the apomorphine in both experiments. A third experiment was conducted to assess the effects of acute morphine on ERK before locomotor stimulation was induced by morphine. Acute morphine did not increase locomotion, but a robust ERK response was produced indicating that the morphine-induced ERK activation was not secondary to locomotor stimulation. ERK activation was again prevented by the apomorphine pretreatment. We suggest that contiguity between the ongoing behavioral activity and the morphine activation of the dopamine reward system incentivizes and potentiates the ongoing behavior generating equivalent behavioral sensitization and conditioned effects.


Asunto(s)
Apomorfina , Dopamina , Ratas , Animales , Apomorfina/farmacología , Dopamina/farmacología , Morfina/farmacología , Agonistas de Dopamina/farmacología , Ratas Wistar , Actividad Motora
11.
J Biochem Mol Toxicol ; 37(7): e23353, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37069807

RESUMEN

Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D-aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.


Asunto(s)
Neuralgia , Arañas , Ratas , Masculino , Animales , Depresión , Hiperalgesia , N-Metilaspartato/farmacología , Ratas Wistar , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Receptores de N-Metil-D-Aspartato , Comorbilidad , Corteza Prefrontal
12.
Behav Brain Res ; 448: 114436, 2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37061200

RESUMEN

The relationship between serotonin dysfunction and schizophrenia commenced with the discovery of the effects of lysergic acid diethylamide (LSD) that has high affinity for 5-HT2A receptors. Activation of these receptors produces perceptual and behavioural changes such as illusions, visual hallucinations and locomotor hyperactivity. Using prepulse inhibition (PPI) of the acoustic startle, which is impaired in schizophrenia,we aimed to investigate:i) the existence of a direct and potentially inhibitory neural pathway between the inferior colliculus (IC) and the pedunculopontine tegmental nucleus (PPTg) involved in the mediation of PPI responses by a neural tract tracing procedure;ii) if the microinjection of the 5-HT2A receptors agonist DOI in IC would activate neurons in this structure and in the PPTg by a c-Fos protein immunohistochemistry study;iii) whether the deficits in PPI responses, observed after the administration of DOI in the IC, could be prevented by the concomitant microinjection of the GABAA receptor antagonist bicuculline in the PPTg.Male Wistar rats were used in this study. An IC-PPTg reciprocated neuronal pathway was identified by neurotracing. The number of c-Fos labelled cells was lower in the DOI group in IC and PPTg, suggesting that this decrease could be due to the high levels of GABA in both structures. The concomitant microinjections of bicuculline in PPTg and DOI in IC prevented the PPI deficit observed after the IC microinjection of DOI. Our findings suggest that IC 5-HT2A receptors may be at least partially involved in the regulation of inhibitory pathways mediating PPI response in IC and PPTg structures.


Asunto(s)
Colículos Inferiores , Núcleo Tegmental Pedunculopontino , Ratas , Animales , Masculino , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Receptores de GABA-A , Receptor de Serotonina 5-HT2A , Bicuculina/farmacología , Serotonina/farmacología , Ratas Wistar
13.
Psychopharmacology (Berl) ; 240(2): 319-335, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36648509

RESUMEN

RATIONALE: Previous studies suggested that the dorsal column of the periaqueductal grey matter (dPAG) can be a target of neural pathways from hypothalamic nuclei involved in triggering fear-related defensive responses. In turn, evidence is provided suggesting that microinjection of the nitric oxide (NO) donor SIN-1 into the anterior hypothalamus (AH) of mice evokes panic-like behaviours and fear-induced antinociception. However, it is unknown whether the dPAG of mice mediates these latter defensive responses organised by AH neurons. OBJECTIVES: This study was designed to examine the role of dPAG in mediating SIN-1-evoked fear-induced defensive behavioural and antinociceptive responses organised in the AH of mice. METHODS: First, neural tract tracing was performed to characterise the AH-dPAG pathways. Then, using neuropharmacological approaches, we evaluated the effects of dPAG pretreatment with either the non-selective synaptic blocker cobalt chloride (CoCl2; 1 mM/0.1 µL) or the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.1 nmol/0.1 µL) on defensive behaviours and antinociception induced by microinjections of SIN-1 in the AH of male C57BL/6 mice. RESULTS: AlexaFluor488-conjugated dextran-labelled axonal fibres from AH neurons were identified in both dorsomedial and dorsolateral PAG columns. Furthermore, we showed that pre-treatment of the dPAG with either CoCl2 or LY235959 inhibited freezing and impaired oriented escape and antinociception induced by infusions of SIN-1 into the AH. CONCLUSIONS: These findings suggest that the panic-like freezing and oriented escape defensive behaviours, and fear-induced antinociception elicited by intra-AH microinjections of SIN-1 depend on the activation of dPAG NMDA receptors.


Asunto(s)
Óxido Nítrico , Sustancia Gris Periacueductal , Ratas , Ratones , Masculino , Animales , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ratas Wistar , Ratones Endogámicos C57BL , Hipotálamo Anterior/metabolismo , Microinyecciones
14.
J Biochem Mol Toxicol, v. 37, n. 7, e23353, jul. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4968

RESUMEN

Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D-aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.

15.
Front Neurosci ; 16: 1006031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203812

RESUMEN

Background: Neuroinflammation is a response that involves different cell lineages of the central nervous system, such as neurons and glial cells. Among the non-pharmacological interventions for neuroinflammation, photobiomodulation (PBM) is gaining prominence because of its beneficial effects found in experimental brain research. We systematically reviewed the effects of PBM on laboratory animal models, specially to investigate potential benefits of PBM as an efficient anti-inflammatory therapy. Methods: We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: photobiomodulation, low-level laser therapy, brain, neuroinflammation, inflammation, cytokine, and microglia. Data search was limited from 2009 to June 2022. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial systematic search identified 140 articles. Among them, 54 articles were removed for duplication and 59 articles by screening. Therefore, 27 studies met the inclusion criteria. Results: The studies showed that PBM has anti-inflammatory properties in several conditions, such as traumatic brain injury, edema formation and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy, depression, and spinal cord injury. Conclusion: Taken together, these results indicate that transcranial PBM therapy is a promising strategy to treat brain pathological conditions induced by neuroinflammation.

16.
J Psychopharmacol ; 36(11): 1257-1272, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36239034

RESUMEN

BACKGROUND: Panic-like reactions elicited by electrical stimulation of the dorsal periaqueductal grey matter (ES-dPAG) seem to be regulated by dopamine (DA). We showed that DA applied intranasally (IN) increased escape-behaviour thresholds induced by ES-dPAG of rats, indicating a panicolytic-like effect. AIMS: We investigated whether IN-DA increases escape-response thresholds induced by ES-dPAG by acting on D2-like receptors, and whether IN-DA affects escape responses elicited by the presence of a potential predator and by open space and height of the elevated T-maze (ETM) as well as motor performance in the open field (OF) test. METHODS: Wistar rats exposed to ES-dPAG were treated with Sulpiride (SUL, 40 mg/kg, D2-like receptor antagonist) previously IN-DA (2 mg/kg). Independent groups of rats treated with IN-DA were submitted to prey versus snake paradigm (PSP), ETM and OF. RESULTS: Anti-aversive effects of the IN-DA were reduced by SUL pretreatment in the ES-dPAG test. IN-DA did not affect the escape number in the PSP nor the escape latencies in the ETM as well as motor performance in the OF. CONCLUSIONS/INTERPRETATION: The IN-DA effects in reducing unconditioned fear responses elicited by ES-dPAG seem to be mediated by D2-like receptors. The lack of effects on panic-related responses in the ETM and PSP may be related to the possibility of avoiding the danger inherent to these models, a defence strategy not available during ES-dPAG. These findings cannot be attributed to motor performance. The decision-making responses to avoid dangerous situations can be orchestrated by supra-mesencephalic structures connected by non-dopaminergic inputs.


Asunto(s)
Crotalinae , Sustancia Gris Periacueductal , Ratas , Animales , Dopamina/farmacología , Ratas Wistar , Miedo , Estimulación Eléctrica , Reacción de Fuga
17.
J Psychopharmacol ; 36(12): 1384-1396, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35946605

RESUMEN

BACKGROUND: Cannabis sativa-derived substances such as cannabidiol (CBD) have attracted increasing clinical interest and consist in a new perspective for treating some neurological and psychiatric diseases. AIMS: The aim of this work was to investigate the effect of acute treatment with CBD on panic-like defensive responses displayed by mice threatened by the venomous snake Bothrops jararaca. METHODS: Mice were habituated in the enriched polygonal arena for snake panic test. After recording the baseline responses of the tail-flick test, the prey were pretreated with intraperitoneal (i.p.) administrations of the endocannabinoid type 1 receptor (CB1) antagonist AM251 (selective cannabinoid 1 receptor antagonist with an IC50 of 8 nM) at different doses, which were followed after 10 min by i.p. treatment with CBD (3 mg/kg). Thirty minutes after treatment with CBD, mice were subjected to confrontations by B. jararaca for 5 min, and the following defensive responses were recorded: risk assessment, oriented escape behaviour, inhibitory avoidance and prey-versus-snake interactions. Immediately after the escape behaviour was exhibited, the tail-flick latencies were recorded every 5 min for 30 min. OUTCOMES: Mice threatened by snakes displayed several anti-predatory defensive and innate fear-induced antinociception responses in comparison to the control. CBD significantly decreased the risk assessment and escape responses, with a consequent decrease in defensive antinociception. The CBD panicolytic effect was reversed by i.p. treatment with AM251. CONCLUSIONS: These findings suggest that the anti-aversive effect of CBD depends at least in part on the recruitment of CB1 receptors.


Asunto(s)
Bothrops , Cannabidiol , Crotalinae , Trastorno de Pánico , Ratones , Animales , Cannabidiol/uso terapéutico , Trastorno de Pánico/inducido químicamente , Miedo , Receptor Cannabinoide CB1
18.
Acta Neurobiol Exp (Wars) ; 82(2): 217-225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833821

RESUMEN

The lateral hypothalamus (LH) sends neural pathways to structures involved on predator­related defensive behaviours, escape and antinociception. The aim of this study was to investigate the role played by µ-opioid receptors located on LH neurons in defensive behaviour and unconditioned fear­induced antinociception elicited by electric stimulation of LH. To achieve the goals, the µ1-opioid receptor selective antagonist naloxonazine was administered at different concentrations in the LH, and the defensive behaviour and fear­induced antinociception elicited by electrical stimulation of LH were evaluated. The electrical stimulation of LH caused escape behaviour followed by defensive antinociception. Microinjections of naloxonazine in a concentration of 5.0 µg/0.2 µL in the LH decreased the aversive stimulus­induced escape behaviour thresholds, but diminished defensive antinociception. These findings suggest that µ-opioid receptors of LH can be critical to panic attack­related symptoms and facilitate the unconditioned fear­induced antinociception produced by LH neurons activation.


Asunto(s)
Conducta Animal , Área Hipotalámica Lateral , Trastorno de Pánico , Receptores Opioides mu , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Bicuculina/farmacología , Miedo/fisiología , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Naloxona/análogos & derivados , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Nocicepción , Pánico/fisiología , Trastorno de Pánico/metabolismo , Trastorno de Pánico/psicología , Ratas , Ratas Wistar , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/metabolismo
20.
Pharmacol Biochem Behav ; 214: 173356, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35181379

RESUMEN

Conditioned drug cues can evoke brief drug-like responses. In this report we show that using brief test sessions, contextual cues can induce conditioned hyperlocomotion and ERK responses equivalent to morphine induced responses. To assess acute unconditioned effects, rats that received morphine (MOR-1) or vehicle (VEH-1) were immediately placed onto an arena for a 5-min locomotion recording session after which ERK was measured in the ventral tegmental area (VTA) and nucleus accumbens (NAc). There were no differences in locomotion between the groups. However, the MOR-1 group had strong ERK activation in VTA and NAc. To assess MOR-conditioned effects, a chronic phase was carried out according to a Pavlovian conditioning protocol. There were two MOR paired groups (MORP), one MOR unpaired (MOR-UP) group and two VEH groups. The treatments were administered over 5 daily five minute test sessions. The final conditioning test was on day 6, in which one of the MOR-P groups and one of the VEH groups received VEH (MOR-P/VEH-6 and VEH/VEH-6, respectively). The other MOR-P group and VEH group received MOR (MOR-P/MOR; VEH/MOR-6, respectively). The MOR-UP group received VEH (MOR-UP/VEH-6). Rats received the treatments immediately prior to a 5-minute arena test, and after the session ERK was measured. No morphine induced locomotor stimulation was observed on day 1 but on days 2 to 5, hyperlocomotion in both MOR-P groups occurred. On test day 6, the MOR-P/VEH-6 and the MOR-P/MOR-6 groups had comparable locomotor stimulant responses and similar ERK activity in the VTA and NAc. The MOR-UP group did not differ from the VEH group. We suggest that ERK activation evoked by acute morphine served as a Pavlovian unconditioned stimulus to enable the contextual cues to acquire morphine conditioned stimulus properties and increase the incentive value of the contextual cues.


Asunto(s)
Morfina , Recompensa , Animales , Encéfalo , Condicionamiento Operante , Morfina/farmacología , Núcleo Accumbens , Ratas , Área Tegmental Ventral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA