Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 14(1): 353-8, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24328385

RESUMEN

We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of magnitude are observed, ranging from 57 ps (radius R = 1.4 nm) to 2.2 ns (R = 3.2 nm). The data reveal a substantially stronger size dependence than found for bi- or multiexciton Auger recombination in CdSe or other semiconductor nanocrystals, scaling in proportion to R(4.3).

2.
J Am Chem Soc ; 135(50): 18782-5, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24289732

RESUMEN

A method for electronic doping of colloidal CdSe nanocrystals (NCs) is reported. Anaerobic photoexcitation of CdSe NCs in the presence of a borohydride hole quencher, Li[Et3BH], yields colloidal n-type CdSe NCs possessing extra conduction-band electrons compensated by cations deposited by the hydride hole quencher. The photodoped NCs possess excellent optical quality and display the key spectroscopic signatures associated with NC n-doping, including a bleach at the absorption edge, appearance of a new IR absorption band, and Auger quenching of the excitonic photoluminescence. Although stable under anaerobic conditions, these spectroscopic changes are all reversed completely upon exposure of the n-doped NCs to air. Chemical titration of the added electrons confirms previous correlations between absorption bleach and electron accumulation and provides a means of quantifying the extent of electron trapping in some NCs. The generality of this photodoping method is demonstrated by initial results on colloidal CdE (E = S, Te) NCs as well as on CdSe quantum dot films.

3.
J Phys Condens Matter ; 25(39): 392002, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24002907

RESUMEN

Hematite, α-Fe2O3, is an attractive narrow gap oxide for consideration as an efficient visible light photocatalyst, with significant potential for band gap engineering via doping. We examine optical absorption in α-(Fe1-xCrx)2O3 epitaxial films and explain the observed excitations, and the nature of the band gap dependence on x, through first-principles calculations. The calculated and measured optical band gap becomes smaller than that of bulk α-Fe2O3 and reaches a minimum as the Cr cation fraction increases to 50%. The lowest energy transitions in the mixed-metal alloys involve electron excitation from occupied Cr 3d orbitals to unoccupied Fe 3d orbitals, and they result in a measurable photocurrent. The onset of α-Fe2O3 photoconductivity can be reduced by nearly 0.5 eV (to 1.60 eV) through addition of Cr.

4.
Nano Lett ; 13(4): 1810-5, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23464673

RESUMEN

The acceleration of Auger-type multicarrier recombination in semiconductor nanocrystals impedes the development of many quantum-dot photonics, solar-cell, lighting, and lasing technologies. To date, only multiexciton and charged-exciton Auger recombination channels are known to show strong size dependence in nanocrystals. Here, we report the first observation of strongly accelerated "trap-assisted" Auger recombination rates in semiconductor nanocrystals. Trap-assisted Auger recombination in ZnO nanocrystals, involving the recombination of conduction-band electrons with deeply trapped holes via nonradiative energy transfer to extra conduction-band electrons, has been probed using time-resolved photoluminescence and transient absorption spectroscopies. We demonstrate that this trap-assisted Auger recombination accelerates dramatically with decreasing nanocrystal size, having recombination times of >1 ns in the largest nanocrystals but only ~80 ps in the smallest. These trap-assisted Auger recombination rates are shown to scale with inverse nanocrystal radius squared (1/τ(Auger) ~ R(-2)). Because surface carrier traps are ubiquitous in colloidal semiconductor nanocrystals, such fast trap-assisted Auger recombination is likely more prevalent in semiconductor nanocrystal photophysics than previously recognized.


Asunto(s)
Puntos Cuánticos/química , Óxido de Zinc/química , Electrones , Luz , Propiedades de Superficie
5.
J Am Chem Soc ; 134(18): 7937-43, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22515505

RESUMEN

Colloidal reduced ZnO nanocrystals are potent reductants for one-electron or multielectron redox chemistry, with reduction potentials tunable via the quantum confinement effect. Other methods for tuning the redox potentials of these unusual reagents are desired. Here, we describe synthesis and characterization of a series of colloidal Zn(1-x)Mg(x)O and Zn(0.98-x)Mg(x)Mn(0.02)O nanocrystals in which Mg(2+) substitution is used to tune the nanocrystal reduction potential. The effect of Mg(2+) doping on the band-edge potentials of ZnO was investigated using electronic absorption, photoluminescence, and magnetic circular dichroism spectroscopies. Mg(2+) incorporation widens the ZnO gap by raising the conduction-band potential and lowering the valence-band potential at a ratio of 0.68:0.32. Mg(2+) substitution is far more effective than Zn(2+) removal in raising the conduction-band potential and allows better reductants to be prepared from Zn(1-x)Mg(x)O nanocrystals than can be achieved via quantum confinement of ZnO nanocrystals. The increased conduction-band potentials of Zn(1-x)Mg(x)O nanocrystals compared to ZnO nanocrystals are confirmed by demonstration of spontaneous electron transfer from n-type Zn(1-x)Mg(x)O nanocrystals to smaller (more strongly quantum confined) ZnO nanocrystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA