Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(4): e62708, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658643

RESUMEN

Functional Magnetic Resonance Imaging (fMRI) in the midbrain at 7 Tesla suffers from unexpectedly low temporal signal to noise ratio (TSNR) compared to other brain regions. Various methodologies were used in this study to quantitatively identify causes of the noise and signal differences in midbrain fMRI data. The influence of physiological noise sources was examined using RETROICOR, phase regression analysis, and power spectral analyses of contributions in the respiratory and cardiac frequency ranges. The impact of between-shot phase shifts in 3-D multi-shot sequences was tested using a one-dimensional (1-D) phase navigator approach. Additionally, the effects of shared noise influences between regions that were temporally, but not functionally, correlated with the midbrain (adjacent white matter and anterior cerebellum) were investigated via analyses with regressors of 'no interest'. These attempts to reduce noise did not improve the overall TSNR in the midbrain. In addition, the steady state signal and noise were measured in the midbrain and the visual cortex for resting state data. We observed comparable steady state signals from both the midbrain and the cortex. However, the noise was 2-3 times higher in the midbrain relative to the cortex, confirming that the low TSNR in the midbrain was not due to low signal but rather a result of large signal variance. These temporal variations did not behave as known physiological or other noise sources, and were not mitigated by conventional strategies. Upon further investigation, resting state functional connectivity analysis in the midbrain showed strong intrinsic fluctuations between homologous midbrain regions. These data suggest that the low TSNR in the midbrain may originate from larger signal fluctuations arising from functional connectivity compared to cortex, rather than simply reflecting physiological noise.


Asunto(s)
Artefactos , Interpretación de Imagen Asistida por Computador/normas , Imagen por Resonancia Magnética/estadística & datos numéricos , Mesencéfalo/anatomía & histología , Corteza Visual/anatomía & histología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética/normas , Masculino , Análisis de Regresión , Relación Señal-Ruido
2.
Cogn Affect Behav Neurosci ; 11(4): 494-507, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21671045

RESUMEN

Many human activities involve a risk of physical harm. However, not much is known about the specific brain regions involved in decision making regarding these risks. To explore the neural correlates of risk perception for physical harms, 19 participants took part in an event-related fMRI study while rating risky activities. The scenarios varied in level of potential harm (e.g., paralysis vs. stubbed toe), likelihood of injury (e.g., 1 chance in 100 vs. 1 chance in 1,000), and format (frequency vs. probability). Networks of brain regions were responsive to different aspects of risk information. Cortical language- processing areas, the middle temporal gyrus, and a region around the bed nucleus of stria terminalis responded more strongly to high- harm conditions. Prefrontal areas, along with subcortical ventral striatum, responded preferentially to high- likelihood conditions. Participants rated identical risks to be greater when information was presented in frequency format rather than probability format. These findings indicate that risk assessments for physical harm engage a broad network of brain regions that are sensitive to the severity of harm, the likelihood of risk, and the framing of risk information.


Asunto(s)
Encéfalo/fisiología , Toma de Decisiones/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Probabilidad , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA