RESUMEN
The rocky, seasonally-dry and nutrient-impoverished soils of the Brazilian campos rupestres impose severe growth-limiting conditions on plants. Species of a dominant plant family, Velloziaceae, are highly specialized to low-nutrient conditions and seasonal water availability of this environment, where phosphorus (P) is the key limiting nutrient. Despite plant-microbe associations playing critical roles in stressful ecosystems, the contribution of these interactions in the campos rupestres remains poorly studied. Here we present the first microbiome data of Velloziaceae spp. thriving in contrasting substrates of campos rupestres. We assessed the microbiomes of Vellozia epidendroides, which occupies shallow patches of soil, and Barbacenia macrantha, growing on exposed rocks. The prokaryotic and fungal profiles were assessed by rRNA barcode sequencing of epiphytic and endophytic compartments of roots, stems, leaves and surrounding soil/rocks. We also generated root and substrate (rock/soil)-associated metagenomes of each plant species. We foresee that these data will contribute to decipher how the microbiome contributes to plant functioning in the campos rupestres, and to unravel new strategies for improved crop productivity in stressful environments.
Asunto(s)
Magnoliopsida/microbiología , Microbiota , Fósforo/química , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Biodiversidad , Brasil , Hongos/clasificación , Metagenoma , Metiltransferasas/genética , Análisis de Secuencia de ADNRESUMEN
Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.
Asunto(s)
Antibiosis , Burkholderia cenocepacia/genética , Complejo Burkholderia cepacia , Carbono/metabolismo , Genoma Bacteriano , Nitrógeno/metabolismo , Bacteriocinas/genética , Burkholderia cenocepacia/aislamiento & purificación , Quitinasas/genética , Solanum lycopersicum/microbiología , México , Rizosfera , Análisis de Secuencia de ADN , Sideróforos/genética , Microbiología del SueloRESUMEN
10.1601/nm.26956 caballeronis is a plant-associated bacterium. Strain TNe-841T was isolated from the rhizosphere of tomato (Solanum lycopersicum L. var. lycopersicum) growing in Nepantla Mexico State. Initially this bacterium was found to effectively nodulate Phaseolus vulgaris L. However, from an analysis of the genome of strain TNe-841T and from repeat inoculation experiments, we found that this strain did not nodulate bean and also lacked nodulation genes, suggesting that the genes were lost. The genome consists of 7,115,141 bp with a G + C content of 67.01%. The sequence includes 6251 protein-coding genes and 87 RNA genes.
RESUMEN
Cupriavidus alkaliphilus ASC-732(T) was isolated from the rhizosphere of agave plant growing in alkaline soils in San Carlos, Tamaulipas, Mexico. The species is able to grow in the presence of arsenic, zinc, and copper. The genome sequence of strain ASC-732(T) is 6,125,055 bp with 5,586 genes and an average G+C content of 67.81%.