Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Geophys Res Atmos ; 123(14): 7444-7461, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30467530

RESUMEN

Large-eddy simulations of an observed single-layer Arctic mixed-phase cloud are analyzed to study the value of forward modeling of profiling millimeter-wave cloud radar Doppler spectral width for model evaluation. Individual broadening terms and their uncertainties are quantified for the observed spectral width and compared to modeled broadening terms. Modeled turbulent broadening is narrower than the observed values when the turbulent kinetic energy dissipation rate from the subgrid-scale model is used in the forward model. The total dissipation rates, estimated with the subgrid-scale dissipation rates and the numerical dissipation rates, agree much better with both the retrieved dissipation rates and those inferred from the power spectra of the simulated vertical air velocity. The comparison of the microphysical broadening provides another evaluative measure of the ice properties in the simulation. To accurately retrieve dissipation rates as well as each broadening term from the observations, we suggest a few modifications to previously presented techniques. First, we show that the inertial subrange spectra filtered with the radar sampling volume is a better underlying model than the unfiltered -5/3 law for the retrieval of the dissipation rate from the power spectra of the mean Doppler velocity. Second, we demonstrate that it is important to filter out turbulence and remove the layer-mean reflectivity-weighted mean fall speed from the observed mean Doppler velocity to avoid overestimation of shear broadening. Finally, we provide a method to quantify the uncertainty in the retrieved dissipation rates, which eventually propagates to the uncertainty in the microphysical broadening.

2.
J Neurophysiol ; 66(5): 1785-804, 1991 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-1765807

RESUMEN

1. The aim of this work was to assess whether a form of synaptic modification based on the theory of Bienenstock, Cooper, and Munro (BCM) can, with a fixed set of parameters, reproduce both the kinetics and equilibrium states of experience-dependent modifications cortex. 2. According to the BCM theory, the connection strength of excitatory geniculocortical synapses varies as the product of a measure of input activity (d) and a function (phi) of the summed postsynaptic response. For all postsynaptic responses greater than spontaneous but less than a critical value called the "modification threshold" (theta), phi has a negative value. For all postsynaptic responses greater than theta, phi has a positive value. A novel feature of the BCM theory is that the value of theta is not fixed, but rather "slides" as a nonlinear function of the average postsynaptic response. 3. This theory permits precise specification of theoretical equivalents of experimental situations, allowing detailed, quantitative comparisons of theory with experiment. Such comparisons were carried out here in a series of computer simulations. 4. Simulations are performed by presenting input to a model cortical neuron, calculating the summed postsynaptic response, and then changing the synaptic weights according to the BCM theory. This process is repeated until the synaptic weights reach an equilibrium state. 5. Two types of geniculocortical input are simulated: "pattern" and "noise." Pattern input is assumed to correspond to the type of input that arises when a visual contour of a particular orientation is presented to the retina. This type of input is said to be "correlated" when the two sets of geniculocortical fibers relaying information from the two eyes convey the same patterns at the same time. Noise input is assumed to correspond to the type of input that arises in the absence of visual contours and, by definition, is uncorrelated. 6. By varying the types of input available to the two sets of geniculocortical synapses, we simulate the following types of visual experience: 1) normal binocular contour vision, 2) monocular deprivation, 3) reverse suture, 4) strabismus, 5) binocular deprivation, and 6) normal contour vision after a period of monocular deprivation. 7. The constraints placed on the set of parameters by each type of simulated visual environment, and the effects that such constraints have on the evolution of the synaptic weights, are investigated in detail.(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Modelos Neurológicos , Plasticidad Neuronal , Sinapsis/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Gatos , Cuerpos Geniculados/fisiología , Matemática , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA