Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 286(1894): 20182504, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963857

RESUMEN

Though tropical forest ecosystems are among the largest natural sources of the potent greenhouse gas nitrous oxide (N2O), the spatial distribution of emissions across landscapes is often poorly resolved. Leaf cutter ants (LCA; Atta and Acromyrmex, Myrmicinae) are dominant herbivores throughout Central and South America, and influence multiple aspects of forest structure and function. In particular, their foraging creates spatial heterogeneity by concentrating large quantities of organic matter (including nitrogen, N) from the surrounding canopy into their colonies, and ultimately into colony refuse dumps. Here, we demonstrate that refuse piles created by LCA species Atta colombica in tropical rainforests of Costa Rica provide ideal conditions for extremely high rates of N2O production (high microbial biomass, potential denitrification enzyme activity, N content and anoxia) and may represent an unappreciated source of heterogeneity in tropical forest N2O emissions. Average instantaneous refuse pile N2O fluxes surpassed background emissions by more than three orders of magnitude (in some cases exceeding 80 000 µg N2O-N m-2 h-1) and generating fluxes comparable to or greater than those produced by engineered systems such as wastewater treatment tanks. Refuse-concentrating Atta species are ubiquitous in tropical forests, pastures and production ecosystems, and increase density strongly in response to disturbance. As such, LCA colonies may represent an unrecognized greenhouse gas point source throughout the Neotropics.


Asunto(s)
Hormigas/fisiología , Óxido Nitroso/análisis , Bosque Lluvioso , Suelo/química , Animales , Costa Rica , Conducta Alimentaria
2.
Ecology ; 100(3): e02589, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30801709

RESUMEN

Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though the sum of litterfall and stem growth (ANPP) did not differ between regions, both stem growth and the ratio of stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo- and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall-statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.


Asunto(s)
Bosques , Clima Tropical , África , Asia , Biomasa , Carbono/análisis , América del Sur , Árboles
3.
Sci Adv ; 4(5): eaaq0942, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29806022

RESUMEN

Current models of ecosystem development hold that low nitrogen availability limits the earliest stages of primary succession, but these models were developed from studies conducted in areas with temperate or wet climates. Global warming is now causing rapid glacial retreat even in inland areas with cold, dry climates, areas where ecological succession has not been adequately studied. We combine field and microcosm studies of both plant and microbial primary producers and show that phosphorus, not nitrogen, is the nutrient most limiting to the earliest stages of primary succession along glacial chronosequences in the Central Andes and central Alaska. We also show that phosphorus addition greatly accelerates the rate of succession for plants and for microbial phototrophs, even at the most extreme deglaciating site at over 5000 meters above sea level in the Andes of arid southern Peru. These results challenge the idea that nitrogen availability and a severe climate limit the rate of plant and microbial succession in cold-arid regions and will inform conservation efforts to mitigate the effects of global change on these fragile and threatened ecosystems.


Asunto(s)
Microbiología Ambiental , Cubierta de Hielo , Nitrógeno , Fósforo , Plantas , Ecosistema , Perú
4.
Oecologia ; 185(3): 513-524, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28983721

RESUMEN

A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.


Asunto(s)
Ecosistema , Nitrógeno/química , Fósforo/química , Microbiología del Suelo , Suelo/química , Alaska , Alimentos , Cubierta de Hielo , Perú , Filogenia , Washingtón
5.
New Phytol ; 214(4): 1506-1517, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28262951

RESUMEN

We hypothesized that dinitrogen (N2 )- and non-N2 -fixing tropical trees would have distinct phosphorus (P) acquisition strategies allowing them to exploit different P sources, reducing competition. We measured root phosphatase activity and arbuscular mycorrhizal (AM) colonization among two N2 - and two non-N2 -fixing seedlings, and grew them alone and in competition with different inorganic and organic P forms to assess potential P partitioning. We found an inverse relationship between root phosphatase activity and AM colonization in field-collected seedlings, indicative of a trade-off in P acquisition strategies. This correlated with the predominantly exploited P sources in the seedling experiment: the N2 fixer with high N2 fixation and root phosphatase activity grew best on organic P, whereas the poor N2 fixer and the two non-N2 fixers with high AM colonization grew best on inorganic P. When grown in competition, however, AM colonization, root phosphatase activity and N2 fixation increased in the N2 fixers, allowing them to outcompete the non-N2 fixers regardless of P source. Our results indicate that some tropical trees have the capacity to partition soil P, but this does not eliminate interspecific competition. Rather, enhanced P and N acquisition strategies may increase the competitive ability of N2 fixers relative to non-N2 fixers.


Asunto(s)
Fósforo/metabolismo , Bosque Lluvioso , Suelo/química , Árboles/fisiología , Costa Rica , Fabaceae/fisiología , Moraceae/fisiología , Micorrizas , Fijación del Nitrógeno , Monoéster Fosfórico Hidrolasas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantones/fisiología , Especificidad de la Especie , Clima Tropical
6.
Ecol Appl ; 26(8): 2449-2462, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27874999

RESUMEN

Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and partial least squares regression to quantify canopy foliar nitrogen (foliar N) across ~164 km2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of foliar N using a gradient boosting model technique. At a local scale, where climate and substrate were constant, we explored the influence of slope position on foliar N by quantifying foliar N on remnant terraces, their adjacent slopes, and knife-edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting foliar N. Observed foliar N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting foliar N (30% and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the field collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in foliar N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function.


Asunto(s)
Nitrógeno , Hojas de la Planta , Costa Rica , Bosques , Árboles , Clima Tropical
7.
Ecology ; 96(5): 1229-41, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26236837

RESUMEN

Observations of high dissolved inorganic nitrogen (DIN) concentrations in stream water have reinforced the notion that primary tropical rain forests cycle nitrogen (N) in relative excess compared to phosphorus. Here we test this notion by evaluating hydrologic N export from a small watershed on the Osa Peninsula, Costa Rica, where prior research has shown multiple indicators of conservative N cycling throughout the ecosystem. We repeatedly measured a host of factors known to influence N export for one year, including stream water chemistry and upslope litterfall, soil N availability and net N processing rates, and soil solution chemistry at the surface, 15- and 50-cm depths. Contrary to prevailing assumptions about the lowland N cycle, we find that dissolved organic nitrogen (DON) averaged 85% of dissolved N export for 48 of 52 consecutive weeks. For most of the year stream water nitrate (NO3-) export was very low, which reflected minimal net N processing and DIN leaching from upslope soils. Yet, for one month in the dry season, NO3- was the major component of N export due to a combination of low flows and upslope nitrification that concentrated NO3- in stream water. Particulate organic N (PON) export was much larger than dissolved forms at 14.6 kg N x ha(-1) x yr(-1), driven by soil erosion during storms. At this rate, PON export was slightly greater than estimated inputs from free-living N fixation and atmospheric N deposition, which suggests that erosion-driven PON export could constrain ecosystem level N stocks over longer timescales. This phenomenon is complimentary to the "DON leak" hypothesis, which postulates that the long-term accumulation of ecosystem N in unpolluted ecosystems is constrained by the export of organic N independently of biological N demand. Using an established global sediment generation model, we illustrate that PON erosion may be an important vector for N loss in tropical landscapes that are geomorphically active. This study supports an emerging view that landscape geomorphology influences nutrient biogeochemistry and limitation, though more research is needed to understand the mechanisms and spatial significance of erosional N loss from terrestrial ecosystems.


Asunto(s)
Ecosistema , Nitrógeno/química , Clima Tropical , Movimientos del Agua , Animales , Costa Rica , Sedimentos Geológicos , Lluvia , Estaciones del Año , Suelo/química , Factores de Tiempo
8.
Ecol Lett ; 17(10): 1282-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25070023

RESUMEN

Paradoxically, symbiotic dinitrogen (N2 ) fixers are abundant in nitrogen (N)-rich, phosphorus (P)-poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N-rich enzymes (phosphatases) that mineralise organic P than non-N2 fixers. We assessed soil and root phosphatase activity between fixers and non-fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non-fixers. Root phosphatase activity and AM colonisation were higher for fixers than non-fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N-P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.


Asunto(s)
Bosques , Micorrizas/fisiología , Fijación del Nitrógeno , Fósforo/metabolismo , Raíces de Plantas/enzimología , Suelo/química , Costa Rica , Monoéster Fosfórico Hidrolasas/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Clima Tropical
9.
PLoS One ; 9(7): e102609, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25050551

RESUMEN

The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important drivers of plant succession--affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.


Asunto(s)
Microbiota/genética , Fertilizantes , Cubierta de Hielo , Tipificación Molecular , Perú , Filogenia , Microbiología del Suelo
10.
Proc Natl Acad Sci U S A ; 111(22): 8101-6, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843146

RESUMEN

Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.


Asunto(s)
Ecosistema , Fabaceae/metabolismo , Ciclo del Nitrógeno , Fijación del Nitrógeno , Árboles , Agricultura , Biomasa , Costa Rica , Ambiente , Actividades Humanas , Humanos , Modelos Teóricos , Simbiosis , Clima Tropical
12.
New Phytol ; 196(1): 173-180, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22882279

RESUMEN

• Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. • Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N : P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N : P resorption ratios and soil nutrient availability. • N : P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes < 23°26') had N : P resorption ratios of < 1, and plants growing on highly weathered tropical soils maintained the lowest N : P resorption ratios. Resorption ratios also varied with forest age along an Amazonian forest regeneration chronosequence and among species in a diverse Costa Rican rain forest. • These results suggest that variations in N : P resorption stoichiometry offer insight into nutrient cycling and limitation at a variety of spatial scales, complementing other metrics of plant nutrient biogeochemistry. The extent to which the stoichiometric flexibility of resorption will help regulate terrestrial responses to global change merits further investigation.


Asunto(s)
Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Brasil , Lluvia , Suelo , Especificidad de la Especie , Temperatura , Árboles/metabolismo , Clima Tropical
13.
Oecologia ; 164(2): 521-31, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20454976

RESUMEN

The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and 'hotspots' of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation 'hotspots' in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Fijación del Nitrógeno , Rhizobiaceae/metabolismo , Árboles/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Costa Rica , Fertilizantes , Fósforo/farmacología , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Árboles/genética , Clima Tropical
14.
Ecology ; 90(12): 3333-41, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20120803

RESUMEN

Tropical forests play a substantial role in the global carbon (C) cycle and are projected to experience significant changes in climate, highlighting the importance of understanding the factors that control organic matter decomposition in this biome. In the tropics, high temperature and rainfall lead to some of the highest rates of litter decomposition on earth, and given the near-optimal abiotic conditions, litter quality likely exerts disproportionate control over litter decomposition. Yet interactions between litter quality and abiotic variables, most notably precipitation, remain poorly resolved, especially for the wetter end of the tropical forest biome. We assessed the importance of variation in litter chemistry and precipitation in a lowland tropical rain forest in southwest Costa Rica that receives >5000 mm of precipitation per year, using litter from 11 different canopy tree species in conjunction with a throughfall manipulation experiment. In general, despite the exceptionally high rainfall in this forest, simulated throughfall reductions consistently suppressed rates of litter decomposition. Overall, variation between species was greater than that induced by manipulating throughfall and was best explained by initial litter solubility and lignin:P ratios. Collectively, these results support a model of litter decomposition in which mass loss rates are positively correlated with rainfall up to very high rates of mean annual precipitation and highlight the importance of phosphorus availability in controlling microbial processes in many lowland tropical forests.


Asunto(s)
Biodegradación Ambiental , Hojas de la Planta/metabolismo , Lluvia , Clima Tropical , Costa Rica , Nitrógeno/metabolismo , Compuestos Orgánicos/metabolismo , Fósforo/metabolismo , Suelo , Solubilidad , Árboles/metabolismo
15.
Ecology ; 89(10): 2924-34, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18959329

RESUMEN

Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest "natural" source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well.


Asunto(s)
Fijación del Nitrógeno , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Suelo/análisis , Árboles/metabolismo , Clima Tropical , Biodiversidad , Costa Rica , Ecosistema , Ambiente , Fósforo/metabolismo , Especificidad de la Especie
16.
Proc Biol Sci ; 275(1653): 2793-802, 2008 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-18755677

RESUMEN

Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.


Asunto(s)
Ecosistema , Cubierta de Hielo , Suelo/análisis , Biodiversidad , Cianobacterias/genética , Cianobacterias/fisiología , ADN Bacteriano/química , ADN Ribosómico/química , Geografía , Nitrógeno/análisis , Fijación del Nitrógeno , Perú , Fotosíntesis , Microbiología del Suelo
17.
Ecology ; 88(1): 107-18, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17489459

RESUMEN

Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N:P ratios in the tropics to infer larger-scale ecosystem processes must comprehensively account for the diversity of any given site and recognize the broad range in nutrient requirements, even at the local scale.


Asunto(s)
Nitrógeno/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Árboles/metabolismo , Biodiversidad , Brasil , Costa Rica , Ecosistema , Ambiente , Clima Tropical
18.
Microb Ecol ; 53(1): 110-22, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17186150

RESUMEN

Primary succession is a fundamental process in macroecosystems; however, if and how soil development influences microbial community structure is poorly understood. Thus, we investigated changes in the bacterial community along a chronosequence of three unvegetated, early successional soils ( approximately 20-year age gradient) from a receding glacier in southeastern Peru using molecular phylogenetic techniques. We found that evenness, phylogenetic diversity, and the number of phylotypes were lowest in the youngest soils, increased in the intermediate aged soils, and plateaued in the oldest soils. This increase in diversity was commensurate with an increase in the number of sequences related to common soil bacteria in the older soils, including members of the divisions Acidobacteria, Bacteroidetes, and Verrucomicrobia. Sequences related to the Comamonadaceae clade of the Betaproteobacteria were dominant in the youngest soil, decreased in abundance in the intermediate age soil, and were not detected in the oldest soil. These sequences are closely related to culturable heterotrophs from rock and ice environments, suggesting that they originated from organisms living within or below the glacier. Sequences related to a variety of nitrogen (N)-fixing clades within the Cyanobacteria were abundant along the chronosequence, comprising 6-40% of phylotypes along the age gradient. Although there was no obvious change in the overall abundance of cyanobacterial sequences along the chronosequence, there was a dramatic shift in the abundance of specific cyanobacterial phylotypes, with the intermediate aged soils containing the greatest diversity of these sequences. Most soil biogeochemical characteristics showed little change along this approximately 20-year soil age gradient; however, soil N pools significantly increased with soil age, perhaps as a result of the activity of the N-fixing Cyanobacteria. Our results suggest that, like macrobial communities, soil microbial communities are structured by substrate age, and that they, too, undergo predictable changes through time.


Asunto(s)
Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Ecosistema , Cubierta de Hielo , Microbiología del Suelo , Bacterias/genética , Comamonadaceae/clasificación , Comamonadaceae/genética , Comamonadaceae/crecimiento & desarrollo , Cianobacterias/clasificación , Cianobacterias/genética , Cianobacterias/crecimiento & desarrollo , ADN Bacteriano/análisis , Biblioteca de Genes , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Perú , Filogenia , Dinámica Poblacional , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/análisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA