Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 220(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33851957

RESUMEN

To establish chromosome biorientation, aberrant kinetochore-microtubule interaction must be resolved (error correction) by Aurora B kinase. Aurora B differentially regulates kinetochore attachment to the microtubule plus end and its lateral side (end-on and lateral attachment, respectively). However, it is still unclear how kinetochore-microtubule interactions are exchanged during error correction. Here, we reconstituted the budding yeast kinetochore-microtubule interface in vitro by attaching the Ndc80 complexes to nanobeads. These Ndc80C nanobeads recapitulated in vitro the lateral and end-on attachments of authentic kinetochores on dynamic microtubules loaded with the Dam1 complex. This in vitro assay enabled the direct comparison of lateral and end-on attachment strength and showed that Dam1 phosphorylation by Aurora B makes the end-on attachment weaker than the lateral attachment. Similar reconstitutions with purified kinetochore particles were used for comparison. We suggest the Dam1 phosphorylation weakens interaction with the Ndc80 complex, disrupts the end-on attachment, and promotes the exchange to a new lateral attachment, leading to error correction.


Asunto(s)
Aurora Quinasa B/metabolismo , Cinetocoros/fisiología , Microtúbulos/fisiología , Mitosis , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aurora Quinasa B/genética , Cinetocoros/metabolismo , Mutación , Proteínas Nucleares/genética , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
2.
EMBO Rep ; 14(12): 1073-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24232185

RESUMEN

The main function of the centromere is to promote kinetochore assembly for spindle microtubule attachment. Two additional functions of the centromere, however, are becoming increasingly clear: facilitation of robust sister-chromatid cohesion at pericentromeres and advancement of replication of centromeric regions. The combination of these three centromere functions ensures correct chromosome segregation during mitosis. Here, we review the mechanisms of the kinetochore-microtubule interaction, focusing on sister-kinetochore bi-orientation (or chromosome bi-orientation). We also discuss the biological importance of robust pericentromeric cohesion and early centromere replication, as well as the mechanisms orchestrating these two functions at the microtubule attachment site.


Asunto(s)
Segregación Cromosómica , Roturas del ADN , Cinetocoros/metabolismo , Animales , Aurora Quinasa B/metabolismo , Replicación del ADN , Humanos , Microtúbulos/metabolismo , Levaduras/genética , Levaduras/metabolismo
3.
Dev Cell ; 21(5): 920-33, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22075150

RESUMEN

How kinetochores regulate microtubule dynamics to ensure proper kinetochore-microtubule interactions is unknown. Here, we studied this during early mitosis in Saccharomyces cerevisiae. When a microtubule shrinks and its plus end reaches a kinetochore bound to its lateral surface, the microtubule end attempts to tether the kinetochore. This process often fails and, responding to this failure, microtubule rescue (conversion from shrinkage to growth) occurs, preventing kinetochore detachment from the microtubule end. This rescue is promoted by Stu2 transfer (ortholog of vertebrate XMAP215/ch-TOG) from the kinetochore to the microtubule end. Meanwhile, microtubule rescue distal to the kinetochore is also promoted by Stu2, which is transported by a kinesin-8 motor Kip3 along the microtubule from the kinetochore. Microtubule extension following rescue facilitates interaction with other widely scattered kinetochores, diminishing long delays in collecting the complete set of kinetochores by microtubules. Thus, kinetochore-dependent microtubule rescue ensures efficient and sustained kinetochore-microtubule interactions in early mitosis.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Saccharomyces cerevisiae/citología , Células Cultivadas , Proteínas Asociadas a Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Curr Biol ; 21(3): 207-13, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21256019

RESUMEN

Proper chromosome segregation in mitosis relies on correct kinetochore-microtubule (KT-MT) interactions. The KT initially interacts with the lateral surface of a single MT (lateral attachment) extending from a spindle pole and is subsequently anchored at the plus end of the MT (end-on attachment). The conversion from lateral to end-on attachment is crucial because end-on attachment is more robust and thought to be necessary to sustain KT-MT attachment when tension is applied across sister KTs upon their biorientation. The mechanism for this conversion is still elusive. The Ndc80 complex is an essential component of the KT-MT interface, and here we studied a role of the Ndc80 loop region, a distinct motif looping out from the coiled-coil shaft of the complex, in Saccharomyces cerevisiae. With deletions or mutations of the loop region, the lateral KT-MT attachment occurred normally; however, subsequent conversion to end-on attachment was defective, leading to failure in sister KT biorientation. The Ndc80 loop region was required for Ndc80-Dam1 interaction and KT loading of the Dam1 complex, which in turn supported KT tethering to the dynamic MT plus end. The Ndc80 loop region, therefore, has an important role in the conversion from lateral to end-on attachment, a crucial maturation step of KT-MT interaction.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Secuencia de Aminoácidos , Cinetocoros/química , Cinetocoros/fisiología , Cinetocoros/ultraestructura , Microtúbulos/química , Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Alineación de Secuencia
5.
Curr Biol ; 19(13): 1112-7, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19540118

RESUMEN

The Drosophila tumor suppressor gene fat encodes a large cadherin that regulates growth and a form of tissue organization known as planar cell polarity (PCP). Fat regulates growth via the Hippo kinase pathway, which controls expression of genes promoting cell proliferation and inhibiting apoptosis (reviewed in). The Hippo pathway is highly conserved and is implicated in the regulation of mammalian growth and cancer development. Genetic studies suggest that Fat activity is regulated by binding to another large cadherin, Dachsous (Ds). The tumor suppressor discs overgrown (dco)/Casein Kinase I delta/epsilon also regulates Hippo activity and PCP. The biochemical nature of how Fat, Ds, and Dco interact to regulate these pathways is poorly understood. Here we demonstrate that Fat is cleaved to generate 450 kDa and 110 kDa fragments (Fat(450) and Fat(110)). Fat(110) contains the cytoplasmic and transmembrane domain. The cytoplasmic domain of Fat binds Dco and is phosphorylated by Dco at multiple sites. Importantly, we show Fat forms cis-dimers and that Fat phosphorylation is regulated by Dachsous and Dco in vivo. We propose that Ds regulates Dco-dependent phosphorylation of Fat and Fat-associated proteins to control Fat signaling in growth and PCP.


Asunto(s)
Cadherinas/metabolismo , Caseína Cinasa 1 épsilon/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Secuencia de Aminoácidos , Animales , Cadherinas/genética , Caseína Cinasa 1 épsilon/genética , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/metabolismo , Moléculas de Adhesión Celular/genética , Línea Celular , Polaridad Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Ratones , Datos de Secuencia Molecular , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transgenes
6.
Development ; 130(4): 763-74, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12506006

RESUMEN

Fat is an atypical cadherin that controls both cell growth and planar polarity. Atrophin is a nuclear co-repressor that is also essential for planar polarity; however, it is not known what genes Atrophin controls in planar polarity, or how Atrophin activity is regulated during the establishment of planar polarity. We show that Atrophin binds to the cytoplasmic domain of Fat and that Atrophin mutants show strong genetic interactions with fat. We find that both Atrophin and fat clones in the eye have non-autonomous disruptions in planar polarity that are restricted to the polar border of clones and that there is rescue of planar polarity defects on the equatorial border of these clones. Both fat and Atrophin are required to control four-jointed expression. In addition our mosaic analysis demonstrates an enhanced requirement for Atrophin in the R3 photoreceptor. These data lead us to a model in which fat and Atrophin act twice in the determination of planar polarity in the eye: first in setting up positional information through the production of a planar polarity diffusible signal, and later in R3 fate determination.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Factores de Transcripción/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Diferenciación Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Polaridad Celular , Citoplasma/genética , Citoplasma/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ojo/citología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Supresores de Tumor , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , Células Fotorreceptoras de Invertebrados/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA